Prevention Discussion

Moderator, Rick Steiner
Marine Advisory Agent
Alaska Marine Advisory Program, University of Alaska Fairbanks
P.O. Box 830, Cordova, AK 99574

R. STEINER: This session is intended to be an open discussion between the audience and the presenters in the prevention session: G. Stock, J. Lee, J. Wills, J. Sikora, and J. Regg, with two additions, Capt. Jerry Aspland and Mr. Walt Parker.

Questions can be directed to the entire panel or to individuals on the panel.

I think prevention is without question the most important element of this conference. First, after the hundreds of millions of dollars that have been spent on damage assessment for Exxon Valdez, we find that oil, fish, water, and wildlife do not mix. That sounds trivial, but we knew that before, we knew that now. Oil is harmful. Second, we generally cannot fix the harm that oil does in the marine environment, and third, once you’ve spilled it, seldom can you recover or contain more than 10% of it. There’s a threshold phenomenon beyond which it probably wouldn’t lessen the amount of biological damage any more than if you recovered none. So prevention is where it’s at.

It’s interesting that in putting this conference together we put out a call for papers and got flooded with papers on response and oversight. We also had good response for prevention, but there are many fewer discussions today than there will be tomorrow on response and the next day on oversight. I think to some extent that’s symptomatic of the problem. We’re much more prone to reacting after the bomb’s gone off than preventing the bomb from going off in the first place. That’s what this discussion should be all about. Any questions on oil spill prevention?

J. GRIKIS: A university is typically a major asset for research programs. Aside from the program that you’re currently involved with at the University of Alaska, can you talk a little bit about any applied spill prevention programs that the university might be investigating?
R. STEINER: As far as I know there are none.

J. GRIKIS: Are there any efforts to develop those types of programs?

R. STEINER: Your question's very well taken. I think it's indicative of the sorry state of affairs that we've gotten into with focusing on damage assessment rather than on preventing these things from happening in the first place. We have long since passed the stage where we've learned anything about oil and marine life; we know it's harmful. But for some reason, the lack of creativity among a number of scientists in every university that I know of points them to doing research that they're used to doing. A lot of people I see use oil spills as an excuse to do projects they've always wanted to do, and we're all human, we're all prone to doing things like that, but I think your point is very well taken. Not only should the University of Alaska get involved in prevention and response research, but I think every coastal university has a responsibility to do that.

The Oil Spill Recovery Institute mandated by Congress in OPA 90 to be administered by NOAA through the Prince William Sound Science Center is established to do that. They were authorized but not appropriated. Part of their mission is to do research specifically on spill prevention and response technologies, but they have not yet been able to actually start anything.

M. O'LEARY: Jonathan, my question is for you. If I heard you right, you said that the tankers going into the terminal had a 50 knot wind restriction, is that correct? And the tankers exiting had a 30 knot restriction?

J. WILLS: No, Michelle, it's the other way around. The wind speed restriction for inbound tankers in some directions of wind is 30 knots. That's because of calculations of the windage on the side of the ship. When a tanker's fully laden you can actually sail it in quite strong winds because most of the forces acting on the ship are below the water, they're not affected by the wind.

M. O'LEARY: We recently had a tanker come into Prince William Sound in winds over 30 knots; they were actually in the 45 to 50 knot category. One of the issues that came up was the force of the wind on an unladen tanker versus a laden tanker. So if I am to understand you correctly, the Shetland Island Council feels that there's a greater risk to an unladen tanker because of the windage?

J. WILLS: There's a greater risk of losing control of an unladen tanker. Our requirement is that the ship must be 35% in ballast or she's not
allowed in. That’s so that you keep the screws submerged and keep steerage way on the vessel. But it’s been recognized in a number of incidents that in high winds you can lose a big tanker. So it’s usually 35 knots. Our channel’s a long avenue that the ship comes down. If the wind is on the beam, then the windage effect is going to be worse, if it’s a headwind, it’s not so serious, and we have four tugs available for every berthing and every sailing. If you need them, the tugs can be there alongside. Because two of them are always tractor tugs, they can push sideways alongside a ship, and they make them fast to the ship as they come in. So it’s possible to control it very precisely. We have a system of leading lights and bearings and very close radar control as well so you can see what’s going on the whole time. But sailing tankers, 50 knots is normal. The port closes over a certain wind speed, I think it’s been reduced recently to 45 knots in certain directions.

One of the worst things that happened to us was with a nearly fully laden tanker, the Chevron North America. She’s one of the biggest ships we’ve ever had in: we get much bigger tankers than you do. A hurricane swung her around about 40 points and blew her off the berth, taking the bow line, the stern line, the spring line, and the loading arms. This was a very expensive and messy business. But she was saved by having the tugs always up and running, ready to roll. After that the wind limits were changed in certain directions. That’s how you learn to do things right; by making mistakes and preventing the ship going ashore.

M. O’LEARY: Hopefully we can learn from what you’ve experienced to bring our ships in through Valdez Narrows and having the four tugs tight alongside.

J. WILLS: The tractor tugs are there by agreement with BP, Exxon, and Shell and all the other partners in the oil terminal. The tugs are owned by a company which the local borough council has 50% share in, and the other 50% is with commercial tug companies. But the contract to provide towage is with the terminal. BP has just agreed to renew the contract, and on that basis new, bigger tractor tugs are being built. BP and Exxon certainly accept the concept of the tractor tug as the ideal tug for our conditions.

J. ASPLAND: I’d like to make a couple of comments to the question. First, there should be general guidelines for every port regarding when to operate and when not to operate, i.e., high winds, low winds, and sea conditions. The comment is correct that in windy environments there actually are worse conditions for unloaded tankers than for loaded tankers.
One thing we have to get better at is using the weather to our advantage. I think that we need to think about that across the United States and other places. In other words, it would be better to bring a ship in over the limit if the wind's straight ahead than it might be to bring it in with a 20 knot beam wind, because the conditions change. So if we're going to devise some guidelines and rules, we have to remember to consider their affect.

I'd like to give you my perspective on the tractor tugs. I think we at ARCO and Foss have probably done more than anyone in the world to understand what it is tractor tugs can and cannot do. It's true that we have a contract for a tractor tug and the boat is on station; it is called the Lindsay Foss. She has 7900 horsepower and she's over 150 feet long. We did this because in the Rosario Straits we run at 9 and 10 knots, which is a heck of a lot faster than anywhere else.

We, at ARCO decided that we wanted to be sure that we had a piece of equipment that in fact could help us in that situation. Our two organizations did a tremendous study which cost us almost $700,000. After the study we had to decide what we were going to do. We considered large tractor conversion, all kinds of different tractor tugs, cycloidal propulsion, Z drive propulsion, and other kinds of propulsion. The propulsion is a key point in what you want a tractor tug to do, because each one operates differently.

We decided all we wanted this boat to do was to be an escort. It wasn't to be a oil spill boat, it wasn't to be a docking boat, and it wasn't to be a firefighting boat. The result is that we built the Lindsay Foss. The only change we made was to have firefighting capability, probably the largest firefighting unit in the world, and she can dock.

The Lindsay Foss is now in the process of training with the pilots, with the tugboat captains, and with our own people. We had to modify the sterns of the ships so that we could use this piece of equipment. The reason we have the equipment there is because in those circumstances at Rosario Straits going somewhere between 9 and 11 knots we wanted to have a piece of equipment that in fact could help us.

Tractor tugs do not work in all places; sometimes they get in their own way. The application has to be right for tractor tugs.

E. NALDER: I'd like to ask Jerry a question. First, why do you want to run 9 to 11 knots in Rosario Strait? And second why don't you do the same thing with tractor tugs up in these waters?

J. ASPLAND: First question. We run 9 to 10 knots because the currents and the wind are such that we can't go any slower because we can't keep
steerage that way. The reason we slowed down is a pilot in the Puget Sound was at the simulator doing some work and said, "we’re going too fast," and that slowed us down. And that also led to development of the tractor tug.

Quite frankly, I believe if we’re going to go 6 knots or less through the Valdez Narrows it is not necessary to have a tractor tug because we’re at a speed where conventional tugs can do the work. We can argue this for days because I know some in the audience have a whole different view. But at this point in time, we do not advocate tractor tugs going that slow.

E. NALDER: As a follow-up, what about the 10 knots out on Prince William Sound, then?

J. ASPLAND: I think 10 knots on Prince William Sound is too slow; we ought to get out of there. This is because escorts can’t keep up. I think we’re kidding ourselves when we delay ships’ passage through wide open waters.

E. NALDER: Would a tractor be appropriate out in Prince William Sound as an escort?

J. ASPLAND: I say no.

E. NALDER: Jim Atkinson, the ex-Coast Guard captain who did the study in the early 1970s, used your vessel the ARCO Fairbanks as a test. He said then that there ought to be tractors here.

J. ASPLAND: At that time there were no tractor tugs big enough to do the job.

J. WILLS: I had the great pleasure to be on board the Lindsay Foss in Anacortes on Sunday afternoon, and she’s a magnificent vessel. I think it’s ideal for escorting when you’re just approaching or in the harbor. I hope to take a trip on her in rough weather, because it was certainly rough outside on Sunday afternoon but that part of the deal fell through, so I can’t say what it’s like as an escort boat. It’s certainly highly maneuverable. In fact, at one point I suggested they should have an annual championship. You know, like these hydraulic diggers; they have formation dancing teams of them; it’s a big thing in Britain. I think you could have formation dancing with tractor tugs, they’re so nimble.

We have slightly smaller vessels as harbor tugs, and we find them ideal, very maneuverable. Our big issue at present is getting escorts like the Prince William Sound escorts, but a few other councilors and I would
like our escorts also to be able to act as ocean-going salvage tugs, because we are out in the middle of the ocean, not an inland sea. I have some doubts still whether a tractor tug is ideal for that ocean-going escort and salvage role. I may be wrong, I just haven’t seen it proved yet. So perhaps the stern drive conventional twin-screw tug is the right one for that. But I’m sold on tractor tugs in the approaches to harbors, and I can’t honestly see how the Valdez Narrows scenario is any different from the opening to Sullom Voe. If anything, it’s more hazardous. I would’ve thought a tractor tug is the ideal tug to have there; and have two of them, one forward, one aft. made fast to your incoming and outgoing tanker.

J. ASPLAND: I have two points. First, Jon I think I have the same kind of doubts about how one of those big boats will work in the open sea. I would caution you about one thing. If you take a platform as big as a tugboat and put too many different features into it, you sacrifice the primary purpose. That’s why we were very careful on the Lindsay Foss not to sacrifice her ability to escort. If you’re going to use the tugs you have to go to sea for salvaging, I think you’ll compromise so much that you’ll end up with nothing. Second, two big surprises to us were the amount of training necessary for the tractor tug operators, and that the pilots have to learn how to use them correctly, and they have to be willing to use them. The key to the whole issue is how quickly can the boat get hooked up and begin to pull full force from the time you tell it go. We’re not talking about minutes, we’re talking about seconds. It is very critical how fast you can hook up. We’re very proud of what we have so far, both vessels going in the same direction and the tug boat turning around to come and pick up the tanker. The little boats can do it in a minute and a half, and that’s picking up the line and pulling full. The best the big boats have done at this time is about two and a half minutes.

S. STEPHENS: We can sit here today and say we’re not going to take laden tankers out when the winds are 40 knots, but that’s really not the case. If the West Coast oil is shut down and we have four or five days where the line is shut down, they’re going to move oil. The decision is not going to come from the oil companies, it’s going to come from political power somewhere else. So the 5 or 6 knot speed that we’re going to travel at through the Narrows is no longer valid because if you’re going to move it in 55 or 60 knots, you’d better be doing 8 knots or better in order to get through the Narrows. The conventional tugs we have now don’t meet the requirements we need in order to be able to handle a tanker under those conditions, at least not with the computer modeling I saw. I want to be very careful that we don’t take a chance with Prince William Sound
because of economics, and that we take a good look at what the most extreme condition is going to be.

My question is, do you feel that you can avoid moving a laden tanker under any conditions if the winds are above 40 knots?

J. ASPLAND: Everything is always possible. I can’t sit here and say to everyone that that won’t happen. I think all of us at one time in our careers have been in a situation where we promised we wouldn’t do something and somewhere along the line the circumstances changed so that it occurs. I notice on the slide today that the David Taylor Basin is guaranteeing that if we put on double hulls we’re not going to have spills on small tankers. I really want to ask that gentleman if he will guarantee that, and if we have a spill will the government pay for it?

Stan, I think your question is very good, I struggle with that question in all kinds of operations every day as I’m sure you do in your business. No one could say you wouldn’t take a ship out in over 40 knots, regardless of the circumstances. I don’t believe you can take a look at every circumstance that occurs because economically you can’t afford it. There’s some risk in everything we do.

E. NALDER: I’d have to look at the logbook again for the exact number, but when we came out on the ARCO Anchorage in January of 1992 the winds were really screaming. Two more escort vessels were added to our little parade on our way out of Valdez Harbor and through the Narrows.

J. WILLS: Jerry has a point, it does depend very much on the conditions. And one of those conditions is the number, type, and capability of the tugs that are available. You can move a ship in 60 knots if you’ve got the right tugs there. But there is a definite cut-off point at Sullom Voe where you stop operating. One reason we can do that is we’ve got plenty of storage space. As an outsider, I think most of the problems at Valdez arise from the fact that that terminal does not have sufficient storage capacity. It would cost a lot less to put in some more storage capacity than to pay for some of the very expensive other safety measures that may be needed.

S. STEPHENS: If we can’t say for sure that we’re not going to move a tanker at 40 or 50 knots because we need to, it’s not going to be safe to take it through the Narrows at 5 or 6 knots. So if we’re going to take it through at 8 or 10 knots, we’d better have the same equipment available that works in Puget Sound which might work in the Narrows.

E. NALDER: Yes, and what Jerry said is probably true. I think the important factors are whether the tanker’s laden or light, which direction
the winds are coming from, and what the currents are like. There are more factors than wind to consider in determining what your operating conditions are going to be like.

J. WILLS: There are a lot of variables in the equation. That doesn’t mean you can’t have an equation and set operating parameters. It’s entirely possible to do that. It’ll vary on the type of ship. But does Valdez not have operating parameters?

J. ASPLAND: There are operating parameters and I think we can do more with the parameters, but everybody has to come to the table and look at what we can or can’t do with each of them. Let me give you an example. I think that we could do more with the weather. If you have one-way traffic, depending on how the wind blows maybe you ought to be in one side of the channel or the other. We don’t take advantage of that right now. Those things need to go into the equation.

W. PARKER: It’s obvious from the discussion with the shipping industry that it has much more flexibility on its weather parameters than most transportation. The reason for that, of course, is because ports differ so drastically and because the industry’s grown up that way for the last several thousand years. As Jerry says, you can work on these things.

One of the problems is in the way we run our ports. Each port is run somewhat differently and while one port authority may resemble another, there are vast differences between them in the way they reach their decisions. While the Coast Guard has the authority to set the parameters, it has to deal ultimately with the port authority or whoever’s operating the port in reaching a conclusion. It’s not the simple clear-cut engineering scheme you can get to when you’re designing the operating parameters for an airport or a highway. It’s something I think we need to continue to work on. I think the increased availability of various types of simulators is going to start to give us the tools which we can start fine-tuning to accomplish some of these things.

Right now in most ports you’ll find that the agreements between the port, the Coast Guard, and different shipping companies are somewhat different. Some skippers refuse to go into some ports where others are plowing right on ahead if they’re allowed to. That’s where I think if it applies to one shipper, it’s got to apply to all. I think we’re getting closer and closer, but there’s still work to do.

R. STEINER: Which brings up the question of the port needs study and the various other studies the Coast Guard has been mandated to do in the
context of OPA 90, including vessel traffic service (VTS) expansion, tug escort expansion, or needs in different ports, etc.

J. ASPLAND: I want everybody to understand where I'm coming from. Many of you here know me as kind of out in the wilderness and doing things that are different from others. I'm not opposed to tractor tugs, but I'm not going to sit and see things change when there's no reason to change them. We're all in the study on escorts and the tug boats, and when that's finished we're going to have to look very carefully at the recommendations that result from the study and proceed from there. I don't want you to think that we intend to fight to the death.

R. FINEBERG: In terms of what has been described as the glacial pace of change in the shipping industry, and I think solidly documented, Mr. Aspland, you're on record as encouraging the public to keep after you, to keep the pressure on to make changes. We've very clearly got a glacial pace. I am hearing from you "when we get the study done," the studies have been delayed interminably. And so far the two arguments I have heard against tractor tugs are that they're not necessary at six knots, which is argued by some. This isn't a very strong argument against the tug; it doesn't speak to the scenarios in which it might be necessary. Your argument there is far more reasonable than what I heard from Mike Williams last night and from the aide to the president of Exxon Shipping saying we are opposed to the tractor tugs because people think they are a panacea. That is just mind-bogglingly stupid logic. It's a nonreason. What's wrong with the thesis that the other companies, if not your own, want to stall it for economic reasons until we're so late that we are convinced, I believe falsely, that the North Slope is winding down and it's no longer economically feasible or necessary?

J. ASPLAND: Let me see if I can answer it this way. I'll only speak for ARCO Marine and Atlantic Richfield. Atlantic Richfield said we will put an investment into Alaska, so I believe we're going to continue to put that investment in, and we will continue to operate out of the port of Valdez.

The study will be finished, I think, in June. Before you make an investment in something, you need to be sure there is a return. Let's see if I can put this in the context of Puget Sound.

We felt the escort we were providing up through the Rosario Straits was really not adequate. So we started into the study to see if there was a different machine to use. We found there was, we made the investment. If we'd found there wasn't a different platform to use, we would not have made the investment because it would give people a false sense of
security. As an example, I'm very concerned that people believe double hulls are the panacea to everything. They are not. I'm not opposed to double hulls, but I am afraid that the public believes that once double hulls are in use we're all going to be safe. We're not going to be safe.

I want to be sure that if an investment is made in different equipment that it is in the right equipment for our needs and that the system gets us the most for prevention.

R. FINEBERG: There's a chance that Jonathan Wills is completely wrong about the tractor tugs being the superior vessel because they are being used elsewhere. I know that promises were made to have the safest port in the world but that's still a gray area.

J. ASPLAND: I'm not going to get into the promises that were made. You all know the story better than I.

Jonathan and I do not disagree on the tractor tug. I believe that the tractor tug with a cycloidal engine in a port area is a superior piece of equipment in the application it's used for. I have not today been convinced that that application is necessary in Valdez. I think that we have one of the most modern ports there is, compared to other places I've been in the world. I think that we're on the right path. It's my understanding that some of the changes that were made in Sullom Voe came about because of some of the ways things operate here.

I think we need to keep things in perspective and know where we're going. I would like to see some changes in Prince William Sound to make it safer, and that may or may not include tractor tugs.

E. NALDER: When are you going to order new double hulls to replace the ships you have out there now?

J. ASPLAND: We plan to put double hulls on the vessels as they come due according to OPA 90. You all know here that ARCO's program for drilling and finding oil on the North Slope and other places in Alaska has not been good this year. We have to see if the amount of oil we find meets the necessity to renew the fleet. If it does not, vessels will go out of service as their times come due. There is nothing wrong with the vessels we have; this year alone we're putting $800,000 into training. We can sit here and argue double hulls, radars, and anything we want to argue, but when you get right down to it, it's the people running who are going to make the difference. I prefer to put the money into training people rather than into technology and double hulls. We did not fight double hulls, they are probably going to prevent 40% of all of the spills. In 1985, the ARCO Anchorage would probably not have spilled any oil if it had a double hull.
We cannot justify the investment at this time. If there were to be a big oil strike, we would probably change that particular scenario.

D. LAWN: I'm from Valdez. Any comments I make are my personal comments and don't necessarily represent the views of my employer. I would like to say this about ARCO. I've had the pleasure to work with many of the people in ARCO's organization for about 17 years. Long before the Exxon Valdez oil spill they were pushing their partners for a better oil spill response system. I know that for a fact because I know the people who were involved. And they've been leaders. They've been criticized a great deal by their partners and by the oil industry. Jerry Aspland's pursuit of the big gulp concept is right on target; it's where we need to go. Maybe not with a tanker but with some device that's capable of 40,000 barrels an hour. But they're leaders in that arena. They're obviously leaders in getting cycloidal tractor tugs in the right conditions. We have a minor disagreement about whether we need them in Valdez. I'm very much in favor of them; I've traveled in other parts of the world and seen brand-new ones being built. Nothing as big as ARCO's and Foss's, but they're out there working in extremely rough weather in the North Sea when anchor handling boats are running for cover.

I want to also compliment ARCO for being open and honest and Eric Nalder for doing such a fine job in detailing what life on board a ship is like and what happens there. I know a lot of people in the industry are trying to do the job right. But we need Jerry Aspland and we need ARCO to push the system. We need to push it a little further and we need to push Jerry Aspland. He's said many times that the regulators and the people need to tell them what to do and make them do it. "Keep the heat on" I think he's quoted as saying. But I have great confidence that we'll have a better system if some of the things that Jerry's pushed for for a long time are implemented by the rest of the industry.

And there are a few things that I think could be done right now and I'd like to ask Jerry this. The VTS system that we're waiting for in Prince William Sound can be used to track ships. We've been able to track ships for many, many years, we track airplanes all around. When your systems are installed on your boats, and I think some of them may already be, will you track your ships down the coast outside of Prince William Sound and wherever they happen to be, or will you only be looking at them inside Prince William Sound?

J. ASPLAND: We don't have any intention of tracking the ships down the coast. We've had people come and talk to us about that. With communications and the way things are today, I don't see the necessity. We also are
operating the crude ships at least 85 miles off the coast as we go down, and we make right turns or left turns into the areas that we go. I put a tremendous amount of faith into the masters and that they, in fact, follow that pattern. I really don’t see at this time, Dan, where VTS is going to get us anything else.

We need to get people on the ships to work as a team so that as decisions come up we get better decision making and more vigilance. We have to make that transition before we give them more things to do. Some of you in the audience who are in electronics are going to be mad. But the gadget people are still out there. We don’t need more gadgets because people are doing more with the gadgets than being vigilant and paying attention.

So I look at VTS up and down the coast as another gadget for someone to look at. I’m concerned that we’re going to do too much of this and we’re going to take people away from their basic responsibilities. I am really concerned when people continue to come to tell us that we have another gadget that’s going to save the world, and there’s absolutely zero regard for the personnel that are involved.

T. LAKOSH: Jerry, I’d like you to address this policy of response to a burning marine spill. You mentioned that the Lindsay was specifically outfitted with fire equipment and is the largest firefighting tug in the world. My question is, if you feel that it’s necessary to protect the citizens of Washington from a tanker fire which would land on shore, why not protect Alaskan citizens from a fire burning on the exact same oil delivered from our ports to your ports through Rosario Strait? Why wouldn’t we have, through ARCO and Alyeska, the proper equipment to respond to a burning marine spill from three sources, either the pipeline south of Thompson Pass which could leak into Valdez Harbor, from the terminal facilities which could leak into the harbor, or from a vessel fire. What has ARCO done to get Alyeska to get this equipment on line?

J. ASPLAND: We paid for two of the big boats to have up-to-date firefighting systems on them. I don’t know which two they are.

T. LAKOSH: Do they have any fire boom?

J. ASPLAND: No, we don’t have any fire boom in Puget Sound. As far as I know, the firefighting equipment on board the terminal at the docks was upgraded a number of years ago, and is considered to be able to meet the needs. The reason I made a point of putting the fire equipment on the tractor tugs in north Puget Sound is because there was none. I think you have adequate coverage here. If you want to talk about hard-headedness,
discussions went on for almost ten years about firefighting equipment in
orth Puget Sound before anything was done about it. It’s there now
because we put it there.

T. LAKOSH: Well, how do you contain a burning slick if you don’t have
fireproof boom?

J. ASPLAND: Fireproof boom is probably not going to do anything for a
burning slick. The reason you buy fireproof boom is so if you’re going to
try to light the spill you can control the oil within the boom and only the
oil within the boom is lit. If you have a fire on the water, what you really
want to do is use your firefighting capability to keep it contained. That
would mean using fire nozzles, etc. and letting it burn itself out, not using
a boom.

A. DEKIN: I was pleased to hear Mr. Aspland talk about the importance of
training and the importance of the human factor in preventing spills in
distinction, perhaps, of an overemphasis on technology. I think, however,
that Mr. Nalder this morning, to whom I’d like to address the question,
made a key conceptual discussion when he talked about the cascade of
errors that is very commonplace in large spills and disasters and other
events. I wonder if he could comment from his experience in reviewing
accidents as he describes in his book, on how to stop a cascade once it’s
started?

E. NALDER: That’s an important question, you know, I think it’s one that
a fleet manager like Jerry Aspland’s looking at pretty hard, too, because
he’ll probably tell you as well that what happens on a vessel is that it’s
usually a number of causes that lead to a problem.

There are two ways to prevent a cascade of errors. One is regulation
so that the elements of the cascade can be controlled by a regulatory body
that says you shall not do certain things. For instance, you shall not go
faster than a certain speed in Rosario Strait, or you shall have an escort
vessel beside you. That prevents one of the parts. Perhaps the regulation
prohibits having crew members working 20-hour and 30-hour shifts. That
also prevents part of a cascade of errors.

The second important element is training. Jerry is working very hard
in his own company to train these crews as teams, which I think is very
important. If the crew members work together well, then that prevents
another element of the cascade of errors.

On the ARCO Anchorage I watched a potential for trouble develop
through a cascade of problems. One key crew member in the engine room
was ill, another key member of the engine room crew was doing some
things he probably shouldn’t have, and some equipment overdue for overhaul may have contributed to a little problem. It didn’t end up being anything drastic. But I watched it happen. It shows in the accident reports that it’s one little thing here, one little thing there, maybe something somebody did a year ago, maybe the fact that the International Maritime Organization (IMO) doesn’t pass a regulation or the Coast Guard doesn’t inspect the ship well enough, and it gets down to the crew making a mistake. So it’s regulation, it’s training, it’s teamwork. And finally, it’s proper equipment. A more robustly built ship is less likely to have trouble than one that’s built with too little steel. An engine that’s in good shape is less likely to have a problem.

J. LEE: The cascade of errors is really a reflection of what is called latent pathogens. These are, to use a medical analogy, sort of germs that reside in the system that are there even when things are operating normally. So you have the potential for this chain of errors to occur even during normal operations where everything appears to be operating correctly. And this was documented in Bhopal where before the accident you could’ve gone in and seen the state of the system, the state of the maintenance, the training of the operators, and predicted that there would be a problem. And there are probabilistic risk assessment techniques, that allow you to go in and catalog these latent pathogens so you can predict with a little bit of assurance that certain systems will encounter these sorts of chains of errors that will result in catastrophes.

A. STOLLS: I have eight pages of notes about all the measures we could take to prevent or mitigate the effects of oil spills, everything from ship maintenance to design to crew training and manning and fatigue. I don’t have a sense of which is most important and what we can do and should be doing. Would you prioritize for me?

W. PARKER: There is no first priority because if you would take it on that point you’ll always have the weakest point in the system waiting for you, so you’ve just got to take it in order. As has been pointed out, the problem with the ships is that they are aging. OPA 90 has a slow replacement schedule. We lost the double hull fight twice before we won it in 1990. We lost it in 1973, we lost it again in 1978. After we’d won it domestically we lost it internationally. And that fight’s not over yet. Double hulls is not the complete answer on the ships, there are a lot of things that need to be done on the ships to make them better. Some people are doing them and some people are not.

I’ve been advocating to put the emphasis on the crews for the past couple years and it looks like I’m making some progress because that
can be done more quickly than building new ships. One of the big advances was getting a second officer on the bridge in coastal waters in OPA 90. This adds a tremendous safety factor.

Nobody talks much about power plants and redundant power. The primary reason we require tug escorts in Valdez in the first place was to save a tanker that has lost power because tankers lack redundant power.

For most skippers, radar is still the most important tool. VTS is going to be a big aid to vessel traffic control because they will be able to see ships in some locations for the first time. None of these things is more important than the others. You can’t say that double hulls are going to save the day, you can’t say that VTS is going to save the day, and putting ARCO’s focus on team training is probably as good as any. I hope that other shippers will too. In this business everybody has to compete to stay in except for the integrated companies. One of the reasons Jerry operates as he does is because he’s part of an integrated company. A difference between ARCO and BP is that BP, being a foreign corporation, has to charter vessels.

G. STOCK: I would like to echo a lot of what Jerry has said. We’ve heard in the last few hours that somewhere between 60 to 80% of all casualties are to some degree related to the human factor. The Coast Guard has shifted focus from the mechanical aspect to the personnel aspect of ship and vessel safety and in particular prevention of oil spills. We have some studies ongoing that deal with personnel issues, the human factor. Our people at the R&D center in Groton are working on a number of studies, and MIT is working on a study for us.

E. NALDER: I won’t try to prioritize myself, because I’m a reporter not an editorialist. But it seems the people who have talked to me would rank building better ships and training as very important. Change the licensing and change the IMO, make it more responsive to port states. People also talk about better escort services. Let’s have more uniform standards in ports.

In a conversation I had today with John Tracy, a television reporter here in Anchorage, he talked about the observers aboard fishing vessels. He said maybe we ought to have observers from the regulatory agencies go aboard merchant ships like our oil tankers randomly to see whether they’re following the rules and see first-hand what’s happening. I thought that was an interesting idea.

J. WILLS: I have a shopping list. My first item is bleepers. Bleepers have been used to trace loads of steel around American freeways and railroads for more than ten years. There’s no technical reason why satellite bleepers
can't be on every tanker so we always know where they are. Once we know where they are, we can get things organized to help them when things go wrong.

I'm concentrating on existing proven technology. Bleepers are my first, followed by radar, particularly new ways of sending radar images down telephone lines more cheaply than has ever been possible before. Radar is no longer prohibitively expensive.

There's a desperate shortage of salvage tugs in Europe, and there are almost none on this side of the United States. I'm wondering what your contingency plan is for the broken down tanker off Middleton Island, and I'm wondering if you're going to get there in time and I'm telling you now you're not. So some sort of salvage tug capacity, which would have to be funded at least partly by the government. There are ways of doing that. In France they pay a salvage tug a retainer which pays for the running costs of the tug. If the tug saves anything under international law that's liable for a lot of money, it splits the salvage 50/50 or even 30/70 with the French government. The government can get up to 70% of the salvage. Great incentive to go and salvage things.

Harbor authorities should ban ships that don't meet international regulations when they're inspected. It's very easy to do in Valdez because the harbor's actually owned by the oil industry. If they're serious, they're going to want to ban tankers that don't meet the specifications. We do in Shetland with the oil industry's connivance and active support.

Let's double a lot of things: steam boilers on oil burning tankers, rudders, steering systems, and hulls.

You should keep the Jones Act, keep foreign shipping off your coasts, keep control of your own shipping. I wish we had managed to do the same but we're in the European federal system and we can't.

Finally, beware of the panacea syndrome. Whenever something new is suggested, it's resisted. When it's made mandatory it's put on the boats or in the oil terminals and said to be innovative. When something like a tractor tug is suggested, it's called a panacea. But the people who say that have personal or corporate agendas. They exaggerate the benefits in order to underline the argument for the item.

W. PARKER: A world problem now is that the port states of the rich countries and the flag states are all dirt poor. Improvement is not going to come from the flag states. Eighty-five percent of the ships that call at U.S. ports now are foreign carriers. We're lucky in Alaska that the Jones Act protects us, but the rest of the country is at high risk.
K. STAHL-JOHNSON: I’m the City of Kodiak’s representative to the Regional Citizens’ Advisory Council. I’m glad we got back into vessel traffic systems.

Prince William Sound has heavy oil tanker traffic. Many types of cargo vessels besides tankers, a large domestic fleet of fishing vessels, and vessel traffic travel in Cook Inlet and through the passes north of Kodiak. I’d like to ask Mr. Parker and the Coast Guard why they said there are no plans for vessel traffic systems to be put in Cook Inlet when I heard that this has been studied and discussed. I’d also like to know more about the discussions going on now about escort vessels. We’re talking about tractor tugs, and making a good system better in Prince William Sound, but we’re not talking about the resistance to escort vessels in Cook Inlet mainly because there isn’t as much money in Cook Inlet as there is from the North Slope pipeline. We haven’t been able to get a serious escort proposal in place for Cook Inlet. We’re talking about some great things going on in Prince William Sound, and we can always refine them and make them better, but there is also a very large potential for accidents in Cook Inlet. One of the vessels that goes into Cook Inlet comes from Prince William Sound. Why are we doing such a great job right around the corner of the Kenai Peninsula and we can’t get some consensus on how to deal with a much more complex system that needs more attention in Cook Inlet?

G. STOCK: It is being looked at in Cook Inlet. Part of the problem is that the tanker traffic level is not as high in Cook Inlet as it is in Valdez. We realize there’s a lot of container vessel traffic in and out of Cook Inlet and the port of Anchorage, but I think most people would agree the risks of a major oil spill are significantly less from a cargo vessel than from a tanker. There’s not a lot of support to put in a VTS or to have an escort system in Cook Inlet. It’s being looked at, but it’s not an issue that is going to be quickly solved.

W. PARKER: Getting back to Jonathan’s comment on the blipper. If you’ve got a VTS on board, the ability to retransmit the signal to the vessel traffic control system is $1,500 or so, and the vessel traffic control system for Cook Inlet in this day and age can just as easily be in the room at Valdez with the rest of the vessel traffic control. I think the evolution of VTS will make it just as easy to track traffic in Cook Inlet as Prince William Sound. Seeing it on radar is the only difference.

E. NALDER: You know, the tanker history in Cook Inlet’s quite checkered. There have been a number of incidents there. Reading the accident
reports involving tankers in Cook Inlet is quite an eye-opener with the
very strong currents and horrible weather conditions.

K. STAHL-JOHNSON: We may not have the traffic coming out of Cook
Inlet that we have out of Prince William Sound, but last year there were
three incidents in less than six weeks where tankers lost power due to ice
in the cooling systems. We don’t have anything in place that’s comparable
to what is in Prince William Sound.

E. NALDER: If you study the traffic and read the accident reports, Cook
Inlet stands out as a place where something could easily happen.

J. WILLS: It depends what you mean by a serious oil spill. We lost 4,000
sea birds in the winter when there are hardly any birds around from one
spill of fuel oil from a tanker. But, many large container ships are pro-
pelled by heavy fuel oil which is really nasty stuff. It doesn’t evaporate
much, it hangs around for years. Nearly 14 years later we still find it. It’s
part of the geology until we get a warm day and then it gets runny. In
Cook Inlet, which is fairly shallow with high tides, there’s a vast area
where marine life is subject to any spill, and there is offshore drilling. I
would have assumed that Cook Inlet had a vessel traffic systems, I’m
surprised to hear it hasn’t.

L. HAMMOND: I’m going to speak now in my role as chair of the COPE
committee of the Cook Inlet Spill Prevention and Response Cooperative.
We are going to have a prevention workshop this fall that’s going to
address prevention issues in the Cook Inlet area. I’d encourage those of
you who are interested in those aspects to attend.

There are a number of factors that affect decision-making related to
the vessel traffic control system in Cook Inlet. UNOCAL does run one
tanker at a time to the Drift River terminal, and another tanker coming
from Valdez to Tesoro, and their schedules are coordinated. There are a
number of issues related to how fast the tides run in Cook Inlet that
apparently make the vessel escort issue a very sticky one.

R. FINEBERG: The Valdez trade is economically unique. With at least six
billion barrels left to go, the hard piping and the tractor tugs at Valdez
would be less than $0.03 per barrel gross. It would cost the companies
after taxes less than two cents per barrel. To put that into context, the
North Slope profits after taxes in 1993 were about $2.96 per barrel. That’s
$1.7 billion, which would be the equivalent of the seventh most profitable
company on the Fortune 500 were the North Slope controlled by one
company instead of three. The difference being that if you’re on the Fortune 500 and you have a bad year you drop off the Fortune 500, your stock goes from $100 to $60, you have no dividends for years on end, as occurred with both IBM and GM. What happened to Exxon when it incurred the costs of the Exxon Valdez is it went from number one to number four on the Fortune 500. It will probably be number one for 1993 although the reports are not out yet. Number one despite the fourth quarter.

The reason for that in part being its fourth quarter profits went up as oil prices declined. The reason, according to the Exxon newsletter to its stockholders, was that refinery profits went up due to the cheaper cost of crude oil. This means that the North Slope oil was even more valuable to its vertically integrated owner companies in low prices, “low” meaning 1.7 billion or number seven on the Fortune 500, as opposed to somewhere up higher in previous years. It was even more valuable overall at the lower prices.

To conclude, why are we having to wrangle to get a decent system?

D. LAWN: I have a quick question for Jerry Aspland. Does ARCO have any plans to revisit the big gulp concept in the new future?

J. ASPLAND: For those who don’t know what big gulp is, big gulp was our idea to take a large ship and make a large skimmer out of it. Dan and I believe that the issue with picking up oil is the volume of liquid you can pick up. If you restrict the volume of liquid picked up either by the method used or the storage available, you’re not getting total efficiency. The concept was that the bow would open and we’d bring the oil in. We could hold 500,000 barrels of liquid in the ship because we weren’t worrying about separating it. I believe that in certain applications you’ve got to get the liquid up and forget about trying to separate it.

To be sure that we finished the cycle, we would have used natural separation to take the water off and then store the oil. I thought it was a good idea, but no one else did.

I would like to tell Mr. Fineberg I wish his numbers were correct because the board of directors and the stockholders of Atlantic Richfield would certainly thank him.
Response Discussion

Moderator, Ernie Piper
144 E. 11th Avenue, Anchorage, AK 99501

E. PIPER: Let’s go back for a minute not to March 24, 1989, but to the second week of May in Washington, D.C. I am with my good friend Dennis Kelso. He’s preparing to go through a series of media presentations that are coming up, as well as talking to Congress, and here’s where Denny came up with what I call the great white sound bite. He picked up the Alyeska Prince William Sound contingency plan and he dropped it on the table with a resounding thud and said, “This is the greatest piece of American maritime fiction since Moby Dick.”

That quote has lived on, and I’ll tell you why it’s often been misunderstood. That’s going to be the source of the first question I put to you. Here we are five years later and this is my question. Do contingency plans tell the truth? Or are they just modern modifications of Moby Dick?

D. LAWN: It takes great effort to make a contingency plan work. If everything is with you and nothing breaks down, and everybody does their job, and the weather is perfect, maybe you’re going to get some of the oil. Maybe you’ll get a lot more oil than has ever been collected before.

Everything has to work right and it has to be there on time, which is almost impossible to do. That doesn’t mean the people there aren’t trying to make it work—it’s just an almost impossible task.

E. PIPER: Does anybody in this room write contingency plans?

R. LEVINE: We write plans for the audience sitting in this room, but we don’t write plans for the people who have to go out and do the work. If we wrote plans for the people who do the work, we’d have one- or two-page documents that describe their jobs and how to perform them. We write very long intricate documents that have thousands of pages on things like dispersants. It is the same information you can get from textbooks elsewhere.

E. PIPER: Why do we write only for the audience in this room? If anybody remembers, it was not necessarily the audience in this room that
had a driving effect on what was happening in Valdez, or in the rest of the Sound, throughout 1989. Where in those plans is the kind of communication that citizens need to have? How about the idea of triage as treatment?

K. STAHL-JOHNSON: Just as you recognize prevention is the key, we're going to have another spill. We're cutting down trees to write contingency plans that are very technical and take a lot of effort, but we're forgetting the most important key to what's going to happen after there is an uncontrolled major disaster in any area. It's the people who are going to be hit with the oil, and it's their lives and their livelihoods, and their futures that are not written into these plans in any way. We have the Coast Guard doing their damnedest to fix a bureaucracy, and we have the Alaska Department of Environmental Conservation (ADEC) doing the same thing. We have all the agencies, industry, everybody trying to meet some kind of regulation standard. But the fishermen on the dock in the Kodiak, which is my reference point, are not included in those plans. Those are the guys who lost their entire livelihoods from the Exxon Valdez and who were never allowed to leave the dock until the oil completely surrounded the island. We are not planning for the people who are actually going to be impacted; the people are not in any of these plans. We're talking about the environment, but somehow the people aren't a part of that environment. That's what's so frustrating about this whole process.

R. KURTZ: The reason the plans were written for the people in this room is that they were the only ones who were directly involved either because of jurisdictional obligations or duties that they were assigned. Before 1989, everyone was complacent since there hadn't been a spill since the pipeline began in 1977, and it was assumed a spill would not occur. As we've all said, 1989 was a wake-up call.

What you have to do now is to prevent slipping back into that complacency. That's the only way you're going to keep the greater public involved. If you're going to write a plan, the secret is to involve individuals other than the folks in this room. You have to try to unlock that door.

E. PIPER: Do you really think you can do that? I'm a carpenter, and one of the biggest frustrations I've always had, particularly in remodeling, is when the owner hangs around while you're trying to do your work and asks, "Why are you putting that there?" "Because that's the way it's done. If I sit and explain it to you for the next two hours, you're gonna be running up a pretty big bill."

Do you think the general public needs to know or hang around? Are they going to be around when booms are being deployed and ask, "How come the fastener isn't going the right way?"
R. KURTZ: The public needs to know because once an incident occurs, they very much impact the decision-making process due to the politics involved.

E. PIPER: Oh, you’ve just said the P-word, which leads me to an article I saw in the Anchorage Daily News. They listed the biggest players in the spill who now, fortunately, are back to relative obscurity. The list included: Steve Cowper, Sam Skinner, Ernie Piper, Frank Jarossi, Dan Lawn, Rick Steiner, Admiral Yost, Chuck Hamill, Dennis Kelso, and Don Cornet.

What’s wrong with this picture? These are the people who were making the decisions and I’ve just heard, as I’ve heard at many conferences, about how we’re going to do some more planning. Who is really going to be there calling the shots when the hard decisions are made? Is it going to be the federal on-scene coordinator?

Hypothetically, we’re in the Gulf of Maine where a lot of tanker traffic is coming in and going out of Casco Bay, and there’s a big spill. It’s washing up on the shore on the coast of Maine. This is a place where there are potatoes; they used to have fish, but they killed most of them. So this is a pretty dirt-poor state and tourism’s about all they have. Now there’s oil washing up all along the shore from Lubec down to Portland. One of the prevailing theories on cleanup, particularly on rocky shorelines exposed as these are, is to leave it alone. And the unified command, such as it is in the Gulf of Maine, even including Nova Scotia, sits down to work and they say, “Well, we’re gonna do triage on a whole area of shoreline, particularly farther north where there aren’t as many people and it’s tougher to get to the shoreline.” Do you think the governor of Maine is going to stand up and go along with that? Do you think the legislators in every coastal county are going to go along with that? What’s going to happen when the story winds up on CNN that night and the unified command stands there with people throwing dead lobsters at them? How long is that strategy and the unified command going to last? Who’s really going to call the shots? Is that theoretically possible?

N. LETHCOE: I feel that we need to undertake some type of education program on the importance of biological cleanup over esthetic cleanup. Unless that’s done through the school system and through whatever means it can be done, we’ll have exactly this situation. It’s really difficult in the tourism industry, no matter how much we want to support biological cleanup. Every reporter that called me for an interview also wanted to know if we could get them out to an oil slick and show them some oil. Nobody wanted to see what’s happened with the beaches that were oiled and now are not oiled, and that they are biologically recovering. Nobody’s
interested in that. They all want disaster. We've got to start talking about biological cleanup, about biological recovery, and do something educational.

E. PIPER: Mr. Nance, you're the on-scene coordinator for the Gulf of Maine; how are you going to respond to that?

I. NANCE: You're going to have to deal with the situation at hand. I think that the reason we plan, and the reason we have the response equipment we do, is to avoid getting into a situation like that. I think the Exxon Valdez turned out to be an untenable situation for the people who had the assigned roles that we put into our plan. I don't think that anyone is going to be able to stand up to and withstand the political pressure of being in an untenable situation. The answer is that we just won't be able to sustain a response like that.

J. HARRALD: I think one thing we overlook is that a technological disaster, unlike a natural disaster, really elicits a lot of anger from people, a lot of emotion. There's someone to blame and we talk like there's going to be a rational aftermath. That emotion comes up as we saw in the Exxon Valdez. One thing our politicians and our corporate leaders learn very early is to survive; the first thing you do is deflect blame to someone else. Now you have a lot of deflecting the blame, and that's going to quickly tear apart the unified command. We've papered over the federal, state, and local things that were not resolved in the law and we pretend they're not going to be there. When the anger comes up and the emotion comes back at the organization, are people still going to stand together or are they going to deflect the blame to each other?

QUESTION: I think in your hypothetical situation in Maine that the people would take over, just like they did in Valdez and Cordova. Then it would be up to the command structure to start supporting them.

E. PIPER: Theoretically possible in Maine, too. Most of the lobstermen are armed these days.

W. PARKER: About the point on anger, people will get mad, but that doesn't mean that they'll do anything.

QUESTION: I think we're missing the real point, and that's the impact of the media, because they're the ones that give us the pictures of the birds and the sea otters and whatever else they think is important to that specific event. The public and the politicians, and maybe even some of the
technical people, are swayed by what the media puts on TV and in the newspapers. As far as I'm concerned, that's a critical situation.

K. STAHL-JOHNSON: My comment is in reference to what Mr. Parker said about angry people. If you recognize the people in the region are going to be even more outraged at the next incident, and they are kept out of the planning process, they're going to say, "To hell with you, this is my beach, this my life, I want to do something." All the planning's going to go up in smoke real fast. The answer to the inevitable question of what do you do when an oil spill's out of control is to manage the anger. You manage the anger by giving people something to do and not a bureaucracy to battle with.

C. WEAVERLING: As commodore of the Wildlife Rescue Group, I agree with the gentleman who spoke about the media. When I'd see the media, they would say, "Dead things, I want to see dead things, and I want to see them fast and I want to get back for my deadline." But, as far as triage goes, triage is a fact of life in a disaster. The definition of disaster is a certain problem to take care of and a certain amount of resources to deal with it. That irritates a lot of people, but basically that's the definition of disaster.

R. KURTZ: Regarding the point on human involvement, right after the Exxon Valdez spill, the Park Service brought in staff psychologists, and I did some work on the analysis with our in-house cultural anthropologist. We found that getting people involved, even if it's peripheral, is the first step in the healing process in this type of event. As previously said, a technological disaster is different from a natural disaster. We found that people don't have the coping skills for it like they do for a natural disaster. That's something to think about and include in planning for preparedness for a future event of this type.

J. ASPLAND: You really need to split the situation into two pieces, as I said earlier. You have the first 72 hours and then you have everything after that. The "after that" is where you can use some kind of an organization. Our experience is that in the first 72 hours you need an autocrat who has the authority and the responsibility to call out the forces. That person also has to have the pocketbook to go with it. The idea is that during the first 72 hours Bob Levine is the on-scene commander. He and Dan Lawn know each other so Bob could say to Dan, "You go down to the fish hatchery and stretch booms." Dan would say sure and not worry then about getting paid because the two of them had built a relationship. Dan may not have a thing to do with our plan, but he would do the job.
This is where we’re missing the point, you can’t organize quickly enough during the first 72 hours, and the public is going to be upset no matter what you do. It’s very difficult to deal with all the issues at one time. I think that drills are all about establishing relationships, not worrying about who goes in what box. When you do worry about who goes in what box, you’re in deep trouble.

E. PIPER: Let me just hold this for a second before we get too far afield on actual event management. Let’s go back a little bit. Most of what I’ve heard are reactive statements. A good move bringing in the psychologist, but by then people were all screwed up, and they were uptight. The relationships are good; that means you guys can keep your heads together and keep them screwed on straight, but that doesn’t quite mean that CNN is looking over your shoulder.

I have another question, is response planning truly interdisciplinary? There’s the Alaska Department of Environmental Conservation (ADEC), the Coast Guard, the Alaska Department of Natural Resources (ADNR), and the Forest Service; all these agencies have statutory authority that only goes so far and there are many things such as risk assessment and communication that just don’t fit into any agency’s boxes. In the development of the contingency plan, has anybody honestly said what the real likelihood is if a couple hundred thousand barrels of oil are disgorged somewhere between Bligh Reef and Hinchinbrook? Do people really know? Is it written down? I think intuitively they know that when there’s a spill it’s all going to go to hell and that they’re not going to pick up the oil. But CNN isn’t going to buy into the blame deflecting. They still want their dead animals.

QUESTION: The trouble is the planning process as we now know it doesn’t work. We have a small refinery. That refinery has one spill. I pull up the following plans: I have a DEC plan, I have a Coast Guard plan, an Environmental Protection Agency (EPA) plan, and a Mineral Management Service plan. Which plan is in control?

E. PIPER: For the sake of argument, let’s assume that you need all those plans. How about things like geomorphological baselines and mapping? A lot of assumptions were made about what was going to happen, like the fate of oil on certain types of beaches based on literature searches. Some of the assumptions led to specific actions and they didn’t necessarily turn out to be completely true. An example of that was how oil reacted on high energy shorelines in Prince William Sound. At least we have enough information to form a hypothesis that letting it sit on high energy shorelines didn’t necessarily mean it was going to be quickly dispersed. We
have some information from last year that suggests that may not have been exactly the right thing to do. How about real agreement on cleanup approaches? You don’t have to say what you’re going to do at point “X” or point “Y,” but how about a range of options given what you know? How about not basing your wildlife sensitivity work on a series of single species studies, but on an ecosystem-based approach? And how about subsistence ownership of parts of Alaska as opposed to just private land ownership? In a village like Chenega Bay or Port Graham, there’s a sphere of subsistence influence, so to speak, that has almost nothing to do with land ownership. Would that better be included in the planning process? Any thoughts on making it more interdisciplinary, or would that turn your planning process into a mess?

R. LEVINE: At Port Angeles we had the same thing. It’s not a 100,000 barrel spill, it’s a 6,000 barrel spill. But what we found to be extremely effective is putting all the people who were concerned, all the different agencies, together. We wrote memoranda of understanding outlining the procedures that we would use on various beaches and for protection, and we signed them. They became, in effect, the contracts that said this is how things would work. Each time we strayed from that contract, someone would come back to let us know the contractor wasn’t doing something according to the document.

The object is that unified command isn’t the three people sitting at the top; unified command is the ability to get the committees together to make the decisions on each of the necessary activities. If you have to determine environmental sensitivities, the idea is to get all the environmentalists into a room. Let them beat each other up, and when they reach agreement, come out and tell the cleanup manager what the priorities are. Don’t leave the decision-making up to the cleanup manager; however, he’s going to have to do it if nobody else will.

That’s where these contingency plans fall down. We assemble the data, but we don’t provide guidelines on how to make the decision. Unified command is a great idea, it works very well. But unified command must be something other than the three people who stand up in front of press conferences twice a day and tell the story of what they’ve done for the day.

E. PIPER: Let’s say I’m seeing legal counsel. I’m one of those interest groups just mentioned. Maybe I’m not agreeing, but I’m your client. I have an interest in the resources out there, and I come to you and say, “You won’t believe what these people are doing; these industry people actually have a good idea. They want to get us all in a room together to set
some priorities, and then we’re gonna sign ‘em; it’s gonna be just like a contract. Then if things go to hell, we’re not gonna have to fight about this. Don’t you think that’s great?”

QUESTION: If you were my client, I would advise you of the up side and the down side. The up side, of course, is if you can mediate an agreement so that everyone wins and everyone feels great, then that is the preferable solution. If, however, things break down, either at that meeting or subsequent thereto, you’ve bound yourself to something that’s going to come back to haunt you should you attempt to litigate.

R. LEVINE: We handled it by going in with the idea that the object was to clean up the spill and protect the environment. If we got sued later, so be it. But we stopped worrying about law suits. In Port Angeles, we did not have a single law suit filed. We went in with honest answers, we admitted where we were having problems, we didn’t try to hide anything, and we brought the parties involved into the room and said, “We need to do this together; are we here to fight or are we here to clean up oil?”

N. LETHCOE: I believe that’s an awfully important part, because I was part of the interagency shoreline assessment committee (ISEC) in Prince William Sound, and being part of the process and understanding why decisions were made in certain ways really reduced the interest in litigation.

T. LISCHINE: I ascribe to the quote: “If planning is everything, then maybe it’s nothing.” I’m speaking as an outsider because I’m not an Alaskan, and I’m not an agency person; I’m an academic. If you don’t believe in planning, why do it? I don’t understand why you persist. From my perspective, it’s hard to recognize you’ve got the wrong objective, that you’ve got to change that objective, and do something else. Nancy Lethcoe mentioned being a member of the ISEC. I consider that the most interesting organizational phenomenon of the spill was ISEC versus the technical advisory group (TAG). They had the diametrically opposed approaches to decision-making, and I’d say the world has decided TAG wins, ISEC loses. I’m incredulous that the EPA got away with putting out a revised national contingency plan (NCP) that says planning is done by bureaucrats who may consult with ISEC types. The solution is within your grasp—why are you doing the planning? Let the citizens do the planning. Then the learning curve is on the part of the citizenry which is necessary so they recognize that when oil hits the beach, triage will have to occur and it will occur and they will accept it as the ISEC did while it was part of the process.
J. ASPLAND: Prior to all the new laws, we had an oil spill plan that was less than a quarter of an inch thick, and we used that in one major spill and one not-so-major spill. We used it all up and down the coast and around the world, and it worked. Now we have a plan that's about a foot thick. We have a plan for every different area that we travel in up and down the coast, but we have attempted to stick to our core plan and it's been very hard. A lot depends on who you select as your on-scene commander. It makes a difference. If you don't have strong individuals, forget about it.

A. DEKIN: Isn't the most important result of your foot-high plan the relationships you establish among the people who might be players? Are not the relationships between the various participants established during the construction of your plan the long-term benefit?

J. ASPLAND: I know when I come to Alaska that I am going to deal with a certain individual and that's the relationship I build. That shouldn't have anything to do with the length of my plan.

A. DEKIN: No, but it's the people you speak to in the development of your plan that establishes the relationships. The relationships are with people, not the paper.

R. LEVINE: No, the people we deal with when we submit a plan are not the people that we're going to deal with when the spill occurs. In the case of the OPA 90 plan, we developed it and sent it to a group of people in Washington, DC who are going to read it and review it. Those people have absolutely nothing to do with the people in Valdez. In fact, our OPA 90 plan was approved from Washington, but we're not required to send a copy of it to the U.S. Coast Guard in Valdez. They're getting one this week through ADEC when we submit the Prince William Sound plan.

C. WEAVERLING: Even though the people indicated in the plan might not be the ones you built a relationship with, the titles indicated on the plan will be the titles of the people you will be dealing with. Beyond that, whether we like the incident command system or not is a moot point because the incident command system is mandated by law.

E. PIPER: We've heard about several different approaches to a more interdisciplinary way to plan for response, and that's worthy of further consideration.

What we have to deal with in the case of a big event like this is that it usually takes an event to dislodge the political system. The people who make these laws in the political system generally assume static conditions,
"What I see today before the election is what’s always going to be there, so let’s pass a law that applies to it,” and they also assume transitory attention spans and move on to the next item on their list.

Is there a need to periodically go back and review the current structure? Reserves in Prudhoe Bay are going down, those in Cook Inlet are beginning to disappear. Is there implicit understanding that changing economic viability, not just changing physical conditions, winds up being factored into the negotiations over response planning?

R. LEVINE: I haven’t seen it happening yet. We’re submitting the Prince William Sound spill plan for renewal and nowhere in the conversation did anybody talk about the decline in the field and the future of oil in Alaska.

E. PIPER: Does anybody know what kind of co-op is being put together, or what kind of equipment we are going to have in Cook Inlet? Does the economic viability of the enterprises in the area enter into the thinking?

Does it show up in the contingency plan in an explicit way? If we’re sitting down and I’m the DEC and we’re beginning to do some response planning for Cook Inlet and somebody says, “What we need are escorts like they have in Prince William Sound. We need escorts in dangerous water. Cook Inlet’s a lot more dangerous, why don’t we have them?”

There are a lot of answers. But is one of the answers that a lot of water is being pumped out of the oil platforms and no one’s making a lot of money in Cook Inlet, and if you do that, people are out of work. Does that enter into the planning at all?

D. LAWN: It enters into it from a political perspective. The rules are all in reaction to a grave event. We have some rules, but at the same time we have lobbying going on to reduce the rules, and agencies end up dealing with whatever the final rule is. I’ve heard a lot of really good comments here today, and some really good questions. But one of the things that’s still driving the system is who’s to blame? I submit that we are all to blame. The oil industry’s to blame, the federal government’s to blame, the state government’s to blame, our legislative process is to blame, the regulators are to blame, the people are to blame.

I want to get beyond that stuff. I think we can solve the problems, but we also have to be honest about what the problems are. A zillion promises and commitments were made to allow the Trans Alaska Pipeline System to become a reality. The industry made some, and the government made some. They were made in response to people who said, “We don’t want you to do this, but we’ll let you do it if you promise us what we want to hear.” I think we weren’t really honest with ourselves. And we as
people, as citizens, didn’t go back and make our legislators behave, make them do what they promised. Our legislators didn’t fund the regulatory agencies to allow for sufficient oversight, and the industry really didn’t do what they said they would do. We’ve got to stop looking for someone to blame, we’ve got to stop being reactionary and writing all these plans, and we’ve got to get a system that works. I think it’s possible. There are some things that have been done by the industry that are good, there are a lot more pieces that need to be added. But somewhere along the line, we citizens have to accept that it can’t all be picked up. A lot more effort has to be put into prevention. Sometimes, no matter what you do, even if you have the best system in the world, you’re going to have a problem. But that’s the cost of allowing it to happen.

I think the anger would diminish if people were really part of the process, if they understood the process and that you really can’t do everything that you’d like to do. We need some political leader to say, “It’s time to go to the moon. Quit the dialogue, get us there.”

W. PARKER: After the 1964 Alaska earthquake President Johnson appointed a federal official in charge of earthquake relief who coordinated with the governor, and things went together pretty fast. Everybody keeps asking who’s in charge and we’re not doing a very good job of defining it.

I didn’t hear any big outpouring after the Huntington Beach oil spill. What’s the suit situation on Huntington Beach?

J. ASPLAND: The Huntington Beach spill response, I think, was successful only because people stood up and took responsibility. The public was as mad as ever. With the Huntington Beach spill we were very lucky that the wind decided to blow onshore, it blew the oil on the beaches, it got scooped up, and that was the end of it. And this goes back to exactly what Walt Parker is talking about, and that is who’s in charge. If you’re not going to be in charge, you’re not going to do very well. And I agree exactly with what Dan Lawn is talking about. That we need to get on with it and we need to think about what direction we’re going to take.

QUESTION: I’m from the interior of Alaska and I came to this conference because I don’t know a lot about oil issues and thought it was high time I learned. There’s been a recurrent theme here which ignores the simple solutions. The Huntington Beach, as I understand it, went down on a rock; it was a single hull vessel. People are concerned about public relations. Imagine you’re watching another oil spill disaster in Prince William Sound on CNN. You learn that it was a single hull vessel, and that a company like ARCO, which is a responsible oil company, has not yet converted one of
its ships to double hull. They have until 2015. Wouldn’t you think that they would set out on an incremental system of converting the tankers? But, you find out that the reason for the accident was a storm of several days’ duration, and there are insufficient storage tanks. We don’t need more working groups to know that more storage tanks and double hull vessels will help. And yet there seems to be no plan for implementing these things that we know will work. Why? Who’s accountable? Is Alyeska accountable? Who’s accountable for starting?

J. SCOTT: I’m going to go back, Ernie, to when you were talking about the money, the cost. It looks to me like the money spent on the Prince William Sound spill has almost created a gridlock. The plan is too complicated, there’re too many plans, all the money had to be spent within a certain time period, everybody’s got a plan, there’s gridlock. It sounds like there are plenty of plans for Cook Inlet. It sounds like some areas are way overfunded where they’re almost in gridlock, while other areas have almost nothing. I’m sure that’s why Jerry says he had a simple plan at one time and he could actually carry out that plan, and now there are so many that it looks like gridlock.

E. PIPER: Here we are five years later. We’ve all been to a number of conferences and congressional hearings, we’ve written legislation, we have citizens’ advisory councils and OPA 90. We’ve done all kinds of things, we have a new division in DEC, we have a fund, and we still have the pipeline. Did we create any monsters? Anybody want to identify any of them lurking around out there?

J. SCOTT: In 1989, spill response in Alaska was pretty low. Today, we have the best spill response capability in the country, but our funding process is gridlock. I think we went backward in our planning process. I think we’re really hurting ourselves with the planning process. We’ve gotten so far, but it’s so complex, so bureaucratic, so legislative that it’s virtually useless.

K. STAHL-JOHNSON: I think when push comes to shove, the books are going to go out the door. The people are going to do what their gut-level response tells them to just like Jim Scott says. He’s got the simple road map through all of this, though the regulations are all there. We definitely have got to keep it simple. It isn’t simple now, and if it isn’t simple, it won’t work.

N. LETHCOE: Back in 1989, when the oil hit the water Jacqui Michel said, “Everybody, we have a problem. We have to get together, we have to
work on this problem and we have to solve it." We did. I look at tourism in reviewing the contingency plans, and I think recreational tourism is in far worse shape now because of the contingency plans than we were in 1989, because we’re not included in the plans. In 1989, nobody was included so we all developed a plan and went to work together. But now the contingency plans as they stand are a disaster for our industry.

R. FINEBERG: The fact is that we have too many plans and too much time goes into planning. People are going to take over because they’re going to be outraged. There are a few of you in the planning process who are simply reflecting that in advance. That we don’t have a clear workable plan for any or all contingencies, and we don’t quite know what is going to occur, is a function of the fact that we don’t have a crystal ball. The indications are that the plans are not yet adequate. Since we all believe that response is the tail end and prevention is the cure, we’ve got to make plans. If Kelley Weaverling wants to go out and save birds the next time, he’s going to know that if Jim Scott says he’ll help, he can count on Jim, and it’s going to work.

Back to the economics. There is a triage situation. There is a health care meeting happening elsewhere on this floor today. One of their attendees was saying if they had half the intellect, the brain power, the energy of the people here working on silly oil spills, they could take care of people dying. Yet we’re all concerned, and rightly so, about complacency. The social issues are always triage.

The way to prevent spills—back to prevention being the key—is to make sure it costs so much that it’s much less likely to spill. That’s an economic answer; and yes, they don’t have the resources in Cook Inlet. Prudhoe Bay is unique and the economic answer in part gives us some comfort. The main point is the economic engine; we better charge a high price for oil spills so that we don’t spill.

P. MEANS: I’m with the Coast Guard, and I think there’s something resulting from OPA 90 that may be overlooked here. It’s the area of contingency. It’s intended to be a joint document that includes community involvement, industry involvement, and the federal and state agencies. All of the marine safety office (MSO) regions in Alaska now have area contingency plans, and they are going to be revised every year for the next five years. Environmental sensitivities are included in the plans. They’re not prioritized but this is the most important site in this area. The Cook Inlet region was included with resources of major concern, moderate concern, and lesser concern. What you’re asking resource agencies to do is essentially say that you can sacrifice my resource, and that’s really hard to do. It’s a positive step,
the plans obviously require a lot of work. If you want to be involved with the revisions and can bring something to the table, want to participate and contribute, I urge you to contact the MSO and volunteer to sit on one of their committees.