TEACHER'S GUIDE TO
STUDENT WORKSHEETS
Unit One
Birds You Know

Index:

Worksheet 1A - Your Bird List 2
Worksheet 1B - Class Bird List 2
Worksheet 1C - Use Your Field Guide 3

Watching birds can involve much more than simply learning their names, but that is the first, indispensable step. In back of this book is a simplified field guide covering 100 species of birds common somewhere in Alaska. If possible, each student should have a copy of his or her own. You might duplicate the pages and post them alongside each other as a class checklist. Other birds seen but not on this guide could be added to the posted list.

Some of these birds are found throughout Alaska, but others are only found in certain regions. The plumage of many species varies depending on age, sex, and time of year. In bird species whose plumage varies, our field guide illustration and description is of an adult male in spring plumage. The spring males are usually the most colorful and easiest birds to identify. (There are exceptions, such as phalaropes, in which the female is more brightly colored than the male.) For help in identifying females and juveniles, as well as the less common species that we don't cover, we urge you to obtain at least one field guide for class use. The standard American field guides are described in the bibliography. A New, Expanded Guide to the Birds of Alaska, by Robert Armstrong, has photographs of each species and contains information about where birds can be found in Alaska in all seasons. Field guides stress identification, and if you wish to explore any topic of bird life in depth, you'll need to go to other kinds of texts.
This is an exercise to show students that they already know quite a lot about birds—and to develop excitement for learning more. As the students work through the book, they will return to this page and fill out the remaining columns.

Get students to start thinking about birds by talking about those they are familiar with locally and from trips, books, movies, television, etc. Additional paper can be used if the students know more birds than will fit on the chart. If possible, incorporate names of birds in local languages. The names of birds in different Native languages are available in Gabrielson and Lincoln's *Birds of Alaska*.
Learning to use a field guide is an important aspect of this course. Discuss the organization of the student field guide. The field guide separates birds by groups and by species. There is a box for checking off the species as they are seen, and information on size, bills, feet, spring habitat, where the birds winter, and on their identifying features. A range map for each bird shows where in Alaska it is found.

In general, field guides start with the least evolutionarily advanced families of birds (swimming birds) and go to the more advanced (perching birds). The Sea Week field guide follows a simplified classification system under which birds are divided into six groups:

Swimming birds include waterfowl (ducks, geese, and swans), loons, grebes, and some seabirds (cormorants, puffins, murrels, murrelets, auklets, and guillemots). Bird watching on a lake or bay, with binoculars or a spotting scope, can be rewarding even at midday when bird activity is low and birds can be difficult to find in other habitats.

Birds of prey include owls, hawks, and eagles, and falcons. Owls are nocturnal and may be hard to find. Look for the pellets of bones and feathers that they leave under trees.

Grouse and Ptarmigan are the smallest group; four species of grouse and three species of ptarmigan are found in Alaska. They have feathers over their nostrils and lower legs and, in ptarmigans, over the entire foot.

Waders include cranes, herons, and shorebirds (oystercatchers, plovers, and sandpipers). Many shorebirds stay in flocks during migration and in winter. The flocks often show remarkable coordination, flying wing-to-wing and displaying alternately their dark backs and their light bellies.

Gull-like birds include the gulls, terns, jaegers, and gull-like seabirds (fulmars, petrels, albatrosses, and shearwaters). These latter birds, the tubenoses, breed on far offshore islands and are rarely seen near the mainland—we have therefore omitted them from the student field guide.

Perching birds include the true perching (passerine) birds, whose feet, with three toes in front and a long one behind, are adapted for locking onto branches. Flycatchers, larks, swallows, jays, crows, ravens, chickadees, wrens, thrushes, warblers, finches, and sparrows comprise only a partial list of passerine families. For purposes of simplified classification we have also included woodpeckers, kingfishers, hummingbirds, and pigeons with the perching birds.
Show the students other field guides. Explain how these are similar to their Sea Week guide and encourage students to use them to identify less-common birds, females or juveniles, not in their own field guide. Have students immediately begin to check off birds in their field guide as they see and identify them. A bird that is seen but is not on the list can be added to the student guide in the correct bird group. Unusual sightings should be reported to Dr. Brina Kessel or Dan Gibson at the University of Alaska Museum, Fairbanks, AK 99775.

(On question 5, worksheet 1C, students may be interested in identifying each bird’s name as well as its group: a. Snowy Owl; b. Mallard; c. Common Raven; d. Bald Eagle; e. Tufted Puffin; f. Chickadee; g. Yellowlegs; h. Bonaparte’s Gull; i. Willow Ptarmigan; j. Sandhill Crane.)
GLOSSARY

Introduce the glossary in the back of the student workbook. The glossary can be used for spelling, games, or vocabulary words. Have the students add additional words as they find them during their studies. Make a classroom set of flash cards with these terms. The students can each make two or three cards; then laminate the set.

Additional Activities:

1. **Language Arts**: Have students practice making careful observations by describing a classmate in detail, so that the description is unique to that person. No other classmate will fit it entirely.

2. **Language Arts, Science**: Next, have a student describe a mystery bird to the class one feature at a time, using the field guide or a picture of the bird. After each clue is given, classmates try to guess the bird. The first student to correctly identify it takes the next turn describing a bird to the class.

3. **Language Arts**: Work with students and the librarian to develop a bibliography of books about birds that are available in your school library.

4. **Social Studies, Science**: Have students make a list of people in the community who know a lot about birds. Some of these people may be willing to share their knowledge with your students. (List may include parents, village elders, birdwatchers, hunters, government agency personnel, museum staff, taxidermists.)

5. **Social Studies, Science**: Adopt a bird. Have each student choose one kind of local bird to learn more about, and look for that bird whenever possible, recording information about it.

Suggestions for data to record:

- Name of bird
- Habitat where the bird is seen (marsh, tundra, forest, schoolyard)
- Location of the bird (ground, shrub, air, tree branch, tree trunk)
- Bird activity (flying, perching, walking, eating, hopping, singing, swimming)
- Observations about activity (manner of flying, how and what it eats)
- Relationship with other animals (whether it is alone or in a group, how it communicates with other birds or animals)

At the end of the week, ask students to share and compare their observations. Happy birding!
Unit Two
Definition of a Bird

Index:

Worksheet 2A - What is a Bird? 8
Worksheet 2B-Make a Feather Pen.............. 9
Worksheet 2C-How Birds Fly 9
Worksheet 2D - Flight Strategies 10
Worksheet 2A
What is a Bird?

Bring or have students bring some feathers for this exercise.

2A What is a Bird?

Birds are different from other groups of animals. How?

1. Is it because birds can fly? Yes ☑ No ☐
 Can other animals fly? Yes ☑ No ☐
 What animals?
 Flying: squirrels, bats

2. Is it because birds can build nests? Yes ☑ No ☐
 Can other animals build a nest? Yes ☑ No ☐
 What animals?
 Cats, rabbits, squirrels

3. Is it because birds lay eggs? Yes ☑ No ☐
 Can other animals lay eggs? Yes ☑ No ☐
 What animals?
 Snakes, alligators, turtles, fish, bugs, duck-billed platypus

4. Is it because birds have feathers? Yes ☑ No ☐
 Do other animals have feathers? Yes ☑ No ☐
 What animals?
 Birds are the only animals that have feathers!

5. How many kinds of feathers are there? 4

6. What kind of feather does a bird use for:
 a. undercoat: down
 b. flying: Flight
 c. topcoat: body
 d. soaring: tail

7. Which of these feathers would you put in a sleeping bag? down

8. Which kind of feather would make a pen? Flight

9. How can you tell a wing feather? has the shaft on one side

10. How can you tell a tail feather? has the shaft down the center
Worksheet 2B
Make a Feather Pen

You will need feathers, knives or scissors, bottles of ink or ballpoint pen filler points, and glue. You may also need boards on which to cut.

Be sure to have a safety session if students will be using the knives. Ask students to suggest ways to be safe. They should cut away from themselves and never walk around with open knives. If for some reason a student needs to carry a straight-bladed knife without a sheath, the knife should be held at the side, pointing downwards. The ballpoint filler pen is easier to make than an ink pen, but does not demonstrate the way a quill pen works.

Worksheet 2C
How Birds Fly

You may want to bring in bird and animal bones for comparison. Open the bones to show what is inside.

2c

1. Name a bird that soars.
 Golden eagle, albatross
2. Name a bird that has to keep flapping hard most of the time.
 Tufted puffin, loon
3. Why do you think there is a difference in the way they fly?
 Puffins have shorter wings and a relatively heavier body
Worksheet 2D
Flight Strategies

Students may want to invite a local pilot to talk to them about the problems of flying. For centuries, people dreamed of flying like the birds—but it is only recently that we learned how. You might read aloud the Greek story of Icarus, the boy who wanted to fly. He made wings of wax and jumped off a mountain, but the sun melted the wax and he fell to his death.

Additional Activities:

1. **Language Arts:** Have students close their eyes. Then touch them with a variety of feathers on the backs and palms of their hands, and on their cheeks. See if they can tell a down feather from a flight feather or one species of bird feather from another. Have them talk about the differences. For example, an owl feather has a soft velvet cover on it that helps silence the bird’s flight.

2. **Music, Language Arts:** Have students sing bird songs, then write your own. Begin with a common tune everyone knows, and make up verses about local birds. For example, here’s an adaptation of “Old McDonald Had a Farm”:

 Old, old Chevak had some
 tundra
 e i e i o
 And on that tundra lived a
 goose
 e i e i o
 With a honk honk here and a
 honk honk there
 Here a honk, there a honk,
 everywhere a honk honk
 Old, old Chevak had some
 tundra
 e i e i o
 And on that tundra lived a
 tundra swan.

3. **Social Studies, Language Arts:** Have students find out about local aviation history. When did a plane first come to your community? How did people react to planes? How did planes change the way people lived?
Unit Three
Parts of a Bird

Index:

Worksheet 3A - Making a Living 12
Worksheet 3B - Types of Beaks 12
Worksheet 3C - Types of Feet 13
Worksheet 3A
Making a Living

Once students have completed this activity, have them play a modified form of “Simon Says” to reinforce the comparison of humans with birds made in the student workbook. They can take turns leading the activity in front of the class.

Peter says:

—“Open your beak!”

“What wing!”

“Pat your belly!”

“Touch your eye stripe!”

Worksheet 36
Types of Beaks

Have students make up questions to quiz each other on types of beaks.

“What kind of bill does a robin have?”

“What bird has a sharp hooked bill?”

Types of Beaks

Different birds have different kinds of bills or beaks to help them obtain their food. Match the bills with their correct descriptions. The birds listed in parentheses are examples, but not a complete list.

1. Short, strong bill for eating and cracking seeds (sparrow, ground birds)
2. Long spear-like bill for catching fish and other small creatures (herons, cranes, loons, kingfishers)
3. Sharp hooked bill for tearing animal food (eagles, hawks, vultures)
4. Slender bill and wide mouth for consuming insects (swallows, warblers)
5. Long pointed bill for digging little animals out of the earth (skimmers, mojaves)
6. Strong, slender bill for picking up seeds or picking up seeds (penguins, anna’s hummingbird)
7. Heavy pointed bill for all-purpose eating (woodpeckers, songbirds)
8. Wide flat bill for eating grass and roots (ducks, geese)
9. Wide, flat bill for eating grass and roots (ducks, geese)

How many columns are on worksheet 3A? Write in the bill type for each bird. Check with your field guide.

3A Types of Beaks

Different birds have different kinds of bills or beaks to help them obtain their food. Match the bills with their correct descriptions. The birds listed in parentheses are examples, but not a complete list.

1. Short, strong bill for eating and cracking seeds (sparrow, ground birds)
2. Long spear-like bill for catching fish and other small creatures (herons, cranes, loons, kingfishers)
3. Sharp hooked bill for tearing animal food (eagles, hawks, vultures)
4. Slender bill and wide mouth for consuming insects (swallows, warblers)
5. Long pointed bill for digging little animals out of the earth (skimmers, mojaves)
6. Strong, slender bill for picking up seeds or picking up seeds (penguins, anna’s hummingbird)
7. Heavy pointed bill for all-purpose eating (woodpeckers, songbirds)
8. Wide flat bill for eating grass and roots (ducks, geese)
9. Wide, flat bill for eating grass and roots (ducks, geese)

How many columns are on worksheet 3A? Write in the bill type for each bird. Check with your field guide.
Worksheet 3C
Types of Feet

After students have completed the activity sheet, play foot charades. Have them move their feet or hands to imitate swimming, wading, grasping, perching, scratching—and see if the other students can guess what bird they’re mimicking.

Note that the student book directs students to fill in both beak and foot types on the chart of birds they began in Unit 1.

Additional Activities:

1. Language Arts, Art, Science: Have students work in groups to design imaginary birds. Use large sheets of paper and magic markers. Have students explain the parts of the bird and how it makes a living using its specialized parts. Their bird might eat garbage, run computer programs, nest in oil drums, or fly messages along the Iditarod trail!

2. Art: Copy this tangram and have students cut it out and arrange the pieces into a variety of bird shapes. Use paints or crayons to color the birds.
Anyone can enjoy watching birds, but to become good at identifying them in the field requires careful observation and patience. Many of the nation's best birders began at the age of your students. Setting up a feeder is an especially good activity for beginning birders, because birds at a feeder can be observed at close range. Gradually, students will learn to identify birds at a distance and in flight.
If possible, build a bird feeder directly outside your classroom window. The Alaska Department of Fish and Game report Winter Bird Feeding in Alaska mentioned in the student book is an excellent source of ideas. Students can take turns recording data. They may want to design experiments as well. Put an owl picture in the window and see what happens. Play recordings of bird songs. Try different kinds of food, such as sunflower seeds versus a bird-seed mix. This can be done in one feeder at different times, or the students can set up a second (control) feeder.

One of the most difficult aspects of birding is to remember what you see when you observe a bird, so that you can identify it later. This activity will help sharpen students’ observational skills as well as their use of descriptive language.
Worksheet 4C
Name and Color these Birds!

You can make flash cards from bird pictures cut out of the student guide or magazines. Students can practice identifying them with binoculars. Have one student hold up the cards, while another at the back of the room uses binoculars to identify them. Most binoculars have both a center focus and an individual eyepiece focus. The individual eyepiece focus helps when one eye is stronger than the other. It remains on the same setting for an individual; if both eyes are the same, set it on zero. When a bird is spotted, look at it and raise the binoculars to meet it, then focus with the center focus. If you don't see the bird, circle around the spot with the binoculars. If you still don't see it, start over and look for it again without the binoculars.
Alaska has a great variety of bird habitats. Dr. Brina Kessel and Dan Gibson described six regions in their 1978 publication Status and Distribution of Alaska Birds (see bibliography); these regions are also used in Armstrong's Guide to the Birds of Alaska, and we make use of them in the student field guide at the back of this book. For this activity, students will need red pencils or crayons to color their region red. You may want to have an Alaska map available so that students can locate the names of communities in the different regions. Have your students write letters to classes in other regions, including questions about local bird life and other topics of interest. The following table may be helpful in your geographical studies.

Alaska Bird Regions

1. Label these regions using these terms: Central, Southcentral, Northern, Southwestern, Southeastern, Western.

2. Draw a dot on the map where you live. Write the name of your community by the dot. Color your region red.

3. Your field guide at the back of the book has a map for each bird species, showing where it can be found in spring. The regions where birds are likely to be found are labeled on the map. However, just because a region is blank on the map does not mean that a bird can be found anywhere in that region. It can only be found in the kind of habitat it prefers. For example, puffins are common in Southeastern, Southcentral and Western Alaska, but that doesn't mean you're likely to see one wading through downtown Anchorage! Puffins are found only in their preferred habitat of salt water and certain sea islands.

Some birds are much more common that others. The field guide maps are black for any bird that you are likely to see in a region, whether it is common or not very common.

Birdwatchers spend much of their time looking for rare birds. The maps are striped in regions where a bird is rare. The maps are white in regions where a bird is never seen. List all birds that you are likely to see in your region; those that are rare; and those birds that have never been seen in your region.

Answers will vary:

- Likely to see:
 - raven
 - rock dove
 - gray jay
 - redpoll

- Rarely seen:
 - murre
 - snow goose
 - crane

- Never seen:
 - snowy owl
 - puffin
 - murre

4. Now list six birds that are common to all regions of Alaska:
 - tundra swan
 - raven
 - common snipe

 Old squaw
 - pintail
<table>
<thead>
<tr>
<th>Weather</th>
<th>Southeastern</th>
<th>South-eastern</th>
<th>South-western</th>
<th>Central</th>
<th>Western</th>
<th>Northern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>cool-wet</td>
<td>cool-wet</td>
<td>cool-damp</td>
<td>cold-dry</td>
<td>cold-dry</td>
<td>cold-dry</td>
</tr>
<tr>
<td>Summer</td>
<td>cool-wet</td>
<td>cool-damp</td>
<td>cool-damp</td>
<td>hot-dry</td>
<td>cool-damp</td>
<td>cool-damp</td>
</tr>
</tbody>
</table>

Vegetation Types	Wetland	Yes	Yes	Yes	Yes	Yes
Forest	Yes	Yes	Yes	Yes	Yes	Yes
Mountain Tundra	Yes	yes	yes	Yes	Yes	Yes
Wet Tundra (wetland)	no	no	no	Yes	Yes	Yes

| Length of Season (Open Water) | Fresh Water | 8-12 months | 8-12 months | 8-12 months | 6 months | 5-6 months | 2-5 months |
| Salt Water | all year | all year | all year | none | 8 months | 6 months | 6 months |

| Bird Abundance | Summer | abundant | abundant | abundant | abundant | abundant | abundant |
| Winter | | 8-12 months | 8-12 months | 8-12 months | 6 months | 5-6 months | 2-5 months |

Numbers of regularly seen bird species (kinds)	Summer Water Birds	Summer Land Birds	All Birds Summer	All Birds Winter
	85	91	176	124
	106	80	186	119
	105	62	167	105
	64	87	151	39
	104	65	169	28
	72	35	107	5

For all of Alaska, the total number of species, not including accidentals, is 355.
You may want to put the preceding chart on an overhead projector for your students, and ask them questions about it such as:

- How would you describe the weather in our region?
- What else can you find out about our region from the chart?
- What region has a hot summer? (Central)
- What region has the most species of birds in summer? (Southcoastal)
- What region has the fewest species of water birds? (Central)
- What region has the fewest birds in winter? (Northern)
- What region has the most species of water birds in summer? (Southcoastal)
- Is fresh water or salt water free of ice for the longer period? (salt water)

Additional Activities:

1. **Art:** Make a bird mobile. Cut out pictures of birds or bring in feathers and attach them with heavy thread to driftwood or pieces of coat hanger.

2. **Science:** Encourage students to be bird detectives. Many important discoveries about bird behavior have been made by people watching birds out their windows! (See “The New Art of Bird Reading” by Jean George, published in both *International Wildlife* Mar./Apr. 1973 and *Reader’s Digest* Mar. 1973. Here are a few ideas to get your students started:

- Which birds dominate at the feeder?
- What happens when an eagle or raven flies overhead?
- Where does each bird eat at the feeder?
- How does each bird come in for a landing?
- What happens on a sunny day compared to a rainy or snowy day?
- What happens when it’s windy?
One book that may be particularly helpful during these migration studies is Bellrose's *Ducks, Geese and Swans of North America* (see bibliography). It has full-page maps of waterfowl migration routes.

For more information on what overwintering birds eat, see the Alaska Department of Fish and Game Wildlife Weather Reports No. 1 (*Winter Bird Feeding in Alaska*) and No. 2 (*Landscaping for Wildlife in Alaska*) by Sue Quinlan. A more comprehensive treatment is given in *The Audubon Society Encyclopedia of North American Birds*.

Additional Activities:

1. **Geography, Science, Art:** Make a large classroom bird migration map. Have students trace the migration routes of several birds on the map with different-colored markers. See how many Alaskan birds you can track. But remind students that we don't know birds' exact migration routes. We can gain information by banding birds, but sometimes all we find out are the end points and general direction.

2. **Language Arts:** Migration is a special time. Birds flying south in the fall are a sign that winter is coming; birds returning after the long winter seem to bring the spring with them. Have students look for poems about migration--and write their own. The English poet Ted Hughes has written an especially fine poem on the subject: (see next page)

3. **Art, Geography:** Have students draw pictures of what birds see as they migrate over your community. Add pictures of what birds see en route, and attach with yarn to a bulletin board map of the bird's migration route.

4. **Mathematics:** Use the migration map and scale to create math problems. Have students determine 1) the length of the oldsquaw's flight path; 2) how long it would take the oldsquaw, flying 40 miles per hour, to reach its wintering grounds; 3) how many days the flight would take if the bird flew nonstop; 4) how many days it would take if the bird flew eight hours a day and rested and ate the remainder of the time.

5. **Physical Education, Mathematics, Geography:** Figure the migration distances flown by several different birds. Then have the class pick one bird. Adding up daily distances for the whole class, have the students try to run as far as the bird migrates. Mark your progress on the map. For example, if each of your 25 students runs a mile, then your bird has flown 25 miles for that day. You may need help from other classes, joggers, or cross-country team members to reach your bird's destination. Another alternative would be for your class to run every day for a week. Then have the students figure what fraction of the bird's migration route they have completed.
GOOSE

The White Bear, with smoking mouth, embraces All the North. The Wild Goose listens.

South, south-- the Goose stretches his neck Over the glacier.

And high, high Turns the globe in his hands Hunts with his pack from star to star Sees the sun far down behind the world.

Sinks through fingers of light, with apricot breast, To startle sleeping farms, at apple dawn, With iceberg breath.

Then to and fro all Christmas, evening and morning, Urging his linked team, Clears the fowler's gun and the surf angler.

Homesick Smells the first flower of the Northern Lights--

Clears the Lamb's cry, wrestles heaven, Sets the globe turning.

Clears the dawns--a compass tolling North, North.

Wingbeat wading the flame of evening.

Till he dips his eyes In the whale's music Among the boom Of calving glaciers And wooing of wolves And rumpus of walrus.

"Goose" from Under the North Star by Ted Hughes. copyright (c) 1981 by Ted Hughes. Reprinted by permission of Viking Penguin Inc.
Unit Five
Bird Migration

Index:

Worksheet 5A - Alaska Bird Migrations 23
Worksheet 5B - Bird Wintering Areas 24
Worksheet 5C - Alaska Bird Migration Map 24

Some reasons birds migrate (move from one part of the country to another area):
1. To find food
2. To find places to nest
3. To avoid cold weather
4. To find open water (not frozen or dried up)

In Alaska there is lots of food for birds in summer. In winter there is less food for birds.

List some kinds of food birds can find in Alaska in the summer that are not available in winter when the water is frozen and snow covers the ground.
1. insects
2. worms
3. fish
4. berries

Where do birds go in winter? The following map shows half the world. The circled numbers on the map mark the migration beginning and ending points of some Alaska birds. The 1's mark the flight of the birds. Lines have been drawn in all regions of Alaska in the summer. Connect the 1's with a red line to show the flying path. Where do birds winter?
5. California or Florida
6. Argentina or Chile

The 2's mark the beginning and ending points for the barn swallow, which is found in southwestern and southeastern Alaska in the summer. Connect the 2's with a blue line. Where does the barn swallow winter?
7. Alberta or Canada or NY

The circles show the bird may be seen in all regions of Alaska in the spring. Connect the 3's with a black line. Where does the sparrow winter?
8. Siberia or California or NY

(Some sparrow also winter in Prince William Sound and Southeast Alaska.)

The migration of birds has been an endless topic of fascination. How do birds manage to travel so far time after time? Birds travel without road signs, restaurants, or travel guides.
The Alaska Bird Migration Map, worksheet 5C, is needed for both exercises in this unit. Students will also need colored pencils and narrow felt-tip markers or crayons.
Unit Six
Wetland Habitats

Index:

Worksheet 6A - What Makes a Habitat? 27
Worksheet 6B - Coastal Wetlands 27
Worksheet 6C - Estuary: A Very Special Place 29
Worksheet 6D - Wet Tundra 30
Worksheet 6E - Rivers, Lakes, and Marshes 32
Worksheet 6F - Muskeg 33
Worksheet 6G - Other Bird Habitat 34
Worksheet 6H - Habitat Choice 35

Alaska is more than 85 percent wetlands. Look at the number of ponds, rivers, sloughs, streams, lakes, and freshwater marshes on a detailed map of the state--not to mention the 34,640 miles of coastline with its estuaries, salt marshes, tidelands, river deltas, and barrier island lagoon systems. Wetlands are highly productive biologically, producing more biomass per acre than our best farm fields. Alaska's wetlands provide food, water, and cover for fish and wildlife, and food and recreation for people. Alaskans visit wetlands to pick berries or to fish, to hunt moose, bears, ducks, and
geese, to trap muskrat and beavers, and simply to watch and enjoy the wildlife. Wetlands function in other ways useful to humans: they help control floods, buffer storms, improve water quality, and provide drinking water.

In Unit 11, we'll discuss the ways in which wetlands benefit us. For now, let's take a closer look at what a wetland is.

Alaska’s wetlands are wet most of the summer and support plants and animals that prefer wet soil. In this book we talk about four categories of wetlands: coastal wetlands; wet tundra; rivers, lakes, and marshes; and muskeg. (These divisions basically follow the classification system used in the Alaska Department of Fish and Game's Wildlife Week materials by Sue Quinlan—see bibliography. We have used the Water, Wetlands, and Wildlife volume of the Wildlife Week program extensively in preparing this unit.)

These four types of wetlands are tied together by the water cycle. Water falls on land as rain and snow, then heads slowly toward the sea. Some water collects in low-lying areas, where it creates lakes, ponds, puddles, and soggy land. The rest flows in rivers to the sea; surface sea water evaporates and collects in clouds; clouds blow inland; and the water falls again as rain or snow.
Worksheet 6A
What Makes a Habitat?

The concept of habitat is very important. Plants and animals need their habitat (or home) to provide the right amount of food, water, and safe cover. The single greatest threat to wildlife is loss of habitat. As towns, roads, and industrial developments spread, the ranges of animals like caribou, bears, and waterfowl are reduced dramatically. Some species are able to co-exist with people; others cannot adapt to human encroachment. Mallards will return to a lake that is being built up. Trumpeter swans, by contrast, although they may tolerate some human activity, will not nest on a lake that is being crisscrossed by motorboats.

Birds nest in many different kinds of habitat, but the summer nesting birds in Alaska concentrate in the wetlands; the river flats and tundra. Millions of migratory birds nest and raise their young in Alaska, primarily in these biologically rich wetland areas. If too much of this key habitat is destroyed, they will have no place to go.

For designing a wetland logo, students will need colored pencils, crayons, or narrow felt-tip pens, scissors, cardboard, glue and safety pins. Students may want to sketch their logos in their books, then draw them again on a separate piece of paper. After coloring, they can cut the logos out, paste onto cardboard, attach safety pins, perhaps glue on ribbons, and wear as badges.

Worksheet 6B
Coastal Wetlands

Alaska's coastal wetlands, where nutrient-laden river water meets the salt water, are biologically among the most productive areas in the world. They are important feeding, resting, and nesting habitat for astonishing numbers of migratory birds. Coastal wetlands take different forms: river deltas, salt marshes, tidelands, estuaries, and barrier island lagoon systems. Every small delta and salt marsh is an important link in the chain of wetlands that enables birds to migrate from as far away as South America and Polynesia to arctic Alaska. Most migratory waterbirds—from swans to sandpipers—stop in wetlands to rest and eat in preparation for the next leg of their journey. They also need wetlands all along their route for shelter during storms.
DELTA

Migratory birds are found in all of Alaska's coastal wetlands, but certain areas are particularly important to large numbers of birds. For example, the delta at the mouth of the Stikine River in southeast Alaska is a migration stopover for thousands of snow geese, trumpeter swans, ducks, and shorebirds (or waders). Other major coastal wetlands in the state include the Copper River Delta, the Yukon-Kuskokwim Delta, Izembek Lagoon, and the North Slope's barrier island lagoon system.

The Copper River Delta in southcentral Alaska is a stopover and feeding ground for thousands of sandhill cranes and nearly 20 million shorebirds, including the entire world population of western sandpipers and most of the red knots and dunlin in North America. These birds rest and feed in the delta before flying farther north and west to nest in other Alaskan wetlands. They use their long bills to probe deep in the estuary mud for tiny clams, worms, and other invertebrates. The Copper River Delta includes not only extensive mud tidelands used by shorebirds, but also salt marshes and a series of sloughs among the freshwater ponds and marshes heavily used by ducks, geese, and trumpeter swans. Offshore sandbar islands provide nesting habitat for glaucous-winged gulls, and a protected lagoon system used by salmon, seals, and sea otters.

In western Alaska, the Yukon-Kuskokwim Delta area, where wet tundra on the inland delta intergrades with rich coastal estuaries, is one of world's most important bird nesting areas. This delta alone is the nesting ground for nearly two million waterfowl and an estimated 100 million shorebirds, including most of the western sandpipers, dunlin, and black turnstones in North America. It is important habitat for sandhill cranes, tundra swans, and three of Alaska's most beautiful ducks: the common, spectacled, and Steller's eiders. Nearly the entire world population of emperor geese and cackling Canada goose, and most of the Pacific flyway white-fronted geese and brant, nest in this area. Unfortunately, these goose populations have declined dramatically in the past few years. Biologists and interested people living all along the flyway have been joining forces to help protect them.

Along the North Slope and in a few places in western and southwestern Alaska, long, narrow gravel barrier islands separate the sea from the mainland. The islands protect the lagoons from icy winds, rough seas, and the harsh scouring of pack ice. The lagoons are rich, like other coastal wetlands, because of the continuous deposit of silt and detritus (dead organic matter) by rivers and streams. The lagoon water warms up more quickly than open sea water, and the barrier islands provide nesting sites free from predators such as arctic foxes, which can't cross the lagoon waters. Molting waterfowl utilize the protected waters; Simpson Lagoon in northern Alaska is
crowded each summer with over 100,000 molting oldsquaw ducks.

The protected lagoons are important stopover places for migratory birds such as common eiders, arctic terns, and brant. Most of the western North American population of brant stop to rest in Izembek Lagoon on the Alaska Peninsula, and to feed on the eelgrass in the shallow water, before making their two-and-one-half-day nonstop flight to Baja California. Most of the world population of Steller's eiders and emperor geese also gather in Izembek Lagoon during fall, and remain in Alaska throughout the winter.

Invertebrates that live in lagoon mud are also food for fish and gray whales. Many fish overwinter in lagoon channels where a bit of open water remains during winter. Belukha whales, and ringed and spotted seals, spend much of every summer preying on fish that live in the lagoons.

The barrier islands off the Copper River Delta are sandbar islands. This barrier island lagoon system is very rich and productive, supporting large populations of fish, shellfish, marine mammals and birds. The islands are important nesting areas for thousands of glaucous-winged gulls. Most dusky Canada geese (a subspecies of Canada) nest on the Copper River Delta. But some of these duskeys are starting to nest on the islands as the predator population, consisting primarily of brown bears, increases on the mainland.

(The above material is drawn largely from Sue Quinlan's description in Water, Wetlands, and Wildlife, p. 9; Unit 2 of Wildlife Week.)
Wet tundra is found over most of northern and western Alaska. Some of the areas covered by wet tundra receive only 8 to 10 inches of rain and snow per year—desert conditions. But in spite of the low precipitation, these areas are classified as wetlands because of the permafrost—permanently frozen ground—beneath the surface. Water can't soak into permafrost, so when the few inches of winter snow melts, the water remains at the surface and covers the tundra with a sheet of water.
In winter, there is not much wildlife on the tundra. Caribou paw out craters in the snow to reach lichens, sedges, and shrubby plants that are buried beneath wind-drifted snow. Lemmings and voles tunnel beneath the snow and also eat the previous summer's plant growth--grasses, sedges, willows, and mosses. Ptarmigan, tundra hares, and beaver also over-winter, as well as predators including wolves, foxes, weasels, ravens, and gyrfalcons.

In summer, however, the wet tundra areas teem with life. Cotton-grass and other sedges, berry plants, and other tundra plants grow quickly during the 24-hour daylight of the arctic summer. Insects, including blackflies, mosquitoes, and springtails, flourish, using the ample ponds and puddles for their larval stages.

These insects are the prime source of protein for the millions of migratory birds that raise their young on the tundra. Alaska's wet tundra areas are important nesting grounds for brant, Canada and greater white-fronted geese, three types of eiders, oldsquaw, and other ducks. During years of drought, even more ducks, millions of them that usually nest in Canada, come north to Alaska's wetlands. Without our wetlands, these birds could not survive dry summers.

Wet tundra is critical habitat for many waders, such as western and semipalmated sandpipers, phalaropes, dunlins, and whimbrels. These birds lay eggs and raise their young in just two short months.

Other nesting birds on wet tundra include swans, loons, parasitic jaegers, snowy owls, and short-eared owls.

Wet tundra is also crucial for thousands of geese after the nesting season. Brant, Canada geese, and greater white-fronted geese migrate to large wet tundra lakes to molt their wing feathers. During the few weeks they are unable to fly, the geese feed on the rich sedge meadows and escape predators by swimming offshore in the lakes.

(The above description was adapted from Sue Quinlan's Water, Wetlands, and Wildlife, p. 6.)
Water from Alaska's vast expanses of muskeg and wet tundra seeps and flows into low-lying areas to form rivers and lakes. Freshwater marshes form along the riverbanks and lake shores. Detritus from these marshes provides nutrients for the plants and animals that live in the rivers and lakes.

This detritus is eaten by aquatic invertebrates such as snails, clams, and the larvae of mayflies, stoneflies, blackflies, and caddisflies; They are also eaten by some fish, such as rainbow trout and Dolly Varden. Young silver salmon feed on detritus, algae, and plankton. Other kinds of fish, such as red, pink, and king salmon fry, feed on detritus-eating animals. Since most salmon fry spend one to three years in fresh water before migrating out to sea, their survival depends on detritus in our streams.

Other wildlife that depend on this aquatic food chain include river otters, mink, brown bears, water shrews, spotted sandpipers, yellowlegs, bald eagles; ospreys, and kingfishers. Although these animals live mainly on land, they need the food resources of rivers and lakes in order to survive.

Algae are the most common lake and river plants. Pondweeds are found in the slower sections of rivers, throughout ponds, and along the shallower portions of lakes. Marshes are characterized by soft-stemmed plants: grasses, sedges, and rushes. Cattails are common in Interior Alaska. Beavers create a lot of marsh habitat as they dam up streams and sloughs.

Rivers, lakes, and the surrounding marshes have been used as important sources of food throughout human history. Villages are traditionally located along river banks or lake shores. Today, as they always have been, rivers and lakes are vital avenues of transportation, for boats and floatplanes in the summer, and for dog teams, snowmobiles, and ski-planes in the winter. Commercial, sport, and subsistence fishing depends on the salmon runs up Alaska's network of mighty rivers and lakes. These wetland areas support a tourist industry as well; people travel from all over the world to photograph, fish, hunt, and observe wildlife.

(This description is based on Sue Quinlan's Water, Wetlands, and Wildlife, p. 9.)
Muskeg is another word for bog. It is a type of freshwater wetland that occurs below tree line on low-lying lands in Alaska. Lakes and ponds are scattered throughout the muskeg.

Common muskeg plants include sphagnum moss, blueberries, cranberries, willows, Labrador tea, sundews, dwarf birch, and small trees like black spruce in Interior Alaska, mountain hemlock in south-coastal Alaska, and lodgepole pine in southeast Alaska—all plants that thrive in areas where the ground is covered or filled with water. The muskeg ground is composed of a thick layer of peat (decayed plants, primarily sphagnum moss), which in some places may be 40 or more feet thick. Peat soaks up water, so walking on muskeg in summer has a spongy quality.

Millions of ducks, especially northern pintails, American wigeon, lesser scaup, surf scoters, and white-winged scoters nest in and near the muskeg of the Yukon Flats, Minto Flats, and Tetlin. These areas are among the most important duck-breeding areas in North America. During years when the prairie potholes are dry; even more ducks than usual arrive from Canada and the northcentral United States.

Many Canada and greater white-fronted geese, as well as loons, grebes, and mergansers make their nests on muskeg lakes. Sandhill cranes dance their courtship displays and raise their young on muskeg wetlands, too.

Muskeg wetlands provide habitat for black bears, moose, muskrat, mink, beaver, red fox, marten, wolves, coyotes, and deer. People go to these areas to pick berries, fish, hunt, trap, and to observe and photograph wildlife.

(Again this description is based on Sue Quinlan's Water, Wetlands, and Wildlife, p. 6.)
Worksheet 6G
Other Bird Habitats

Birds are found everywhere. Discuss with students the fact that different birds prefer different habitats—just like people. Some people like Interior Alaska best, other people like coastal Alaska, and others like the lower 48 states, Hawaii, or foreign countries. Similarly, some birds live deep in the forest, others are found only high in the mountain tundra, and others live on cliffs. Although we have emphasized wetlands habitat in this book, both because wetlands make up the bulk of Alaska and because wildlife tends to be heavily concentrated in wetlands, students who want to look for woodpeckers will have to look in the woods, and those who want to see wheatears will have to go up into the dry mountain tundra where wheatears build their nests.

Wildlife tends to be most abundant on the border between two types of habitat—where the forest touches the edge of a marsh, for example. At the junction you will find birds and animals from both types of habitat. This is known as the "edge effect," and is a good concept to introduce to students.
Worksheet 6H
Habitat Choice

This activity provides students a chance to do some writing on their own, and to review what is covered in this unit.

Additional Activities:

1. **Art, Science, Language Arts:** Divide class into small groups to investigate wetland habitat types. Make murals of local wetland types, labeling cover (shelter or nesting site), food and water. Use string to connect the food with the organisms that eat it. Draw the sun, which provides energy to plants.

2. **Language Arts, Science:** Draw a chart on the board comparing two different wetlands—wet tundra vs. muskeg; estuary vs. freshwater marsh; and so on.

3. **Physical Education, Science:** Eagles eat fish, and fish eat insects. Let students choose to be insects, fish, or eagles. On a signal from the teacher, the eagles try to tag the fish, while the fish try to tag the insects. If an eagle catches a fish, the fish turns into another eagle, and if the fish catches an insect, the insect turns into a fish. After a few moments, stop the play. Any of the original eagles who have not caught a fish die and fall into the stream, where they are eaten by the insects; in the next round of play, they turn into insects. Start game up again.

What happened? If you started with lots of eagles, were they all able to get enough food? Have the students reassign themselves in a way that will result in having some of each creature at the end of the game. They should discover that there needs to be a lot of insects, some fish, and a very few eagles. Not only do the eagles need the fish, but the fish also need the eagles. If there weren't any eagles to control the fish population, the fish would wipe out their food source (the insects), and starve. Similarly, without fish to keep their numbers in check, the insects would overpopulate and wipe out all the plants that make up their food source. Discuss how this game reflects the situation in the real world. What are the game's shortcomings?
4. **Language Arts, Art, Science:**
Have students each choose a bird they would like to have live in their area. Have them list the habitat needs of that bird (refer to student bird guide). From this list have them write an ad for the newspaper or make a poster advertising their neighborhood or village as a prime site for a home-hunting bird.

5. **Physical Education, Science:**
You'll need blindfolds, chalkboard, chalk, string, a sign that says “predator,” and a sign that says “prey.” Ask the class to name some regional predators and their prey. Write these pairs on the blackboard. Have two volunteers play the role of one of these pairs. Each person must wear the appropriate predator or prey sign. Clear a large space in the middle of the room. Blindfold the student who is acting as prey and place her some distance from the predator. Have the predator try to approach its prey stealthily. If the prey senses the approaching predator, she should point in his direction. If the predator is thus “spotted,” the game ends and a new pair is chosen. A variation of this game would be to place the blindfold on the predator, spin her around, and tell her to locate the rabbit (hare) who must remain in place (although she may make squeaky, scratchy rabbit (hare) noises if she wishes.)

A particularly rousing and uproarious version of the game follows: clear a large space in the middle of the roan.

Have the students form a large circle. In the middle of the circle place a blindfolded predator and a blindfolded prey. Gently spin each around. The predator will then begin to stalk the prey. The predator must occasionally make hungry noises (growls and lip smacking) and the prey must also make appropriate animal noises from time to time. These auditory cues will help them alternatively approach and avoid each other. After four or five pairs of students have played the predator-prey game, interest will be high for a class discussion concerning the qualities of successful predators (especially quick reflexes, good hearing and smell, overall physical strength). Also discuss ways in which prey protect themselves (speed, immobility, protective coloration, offensive odors). (Described by Barb Tervo, Selawik Elementary School, Selawik.)

6. **Language Arts:** Have students try to find as many names as possible for wetland habitats and define these names. Their list should include:

Freshwater wetlands - marsh, swamp, bog, muskeg, pond, lake, river, stream, creek, brook, island, mudflat, point, peninsula.

Saltwater wetland - tideland, reef, island, cove, inlet, bay, point, estuary, salt marsh, peninsula, lagoon, slough.