What is Concept Mapping?

Concept mapping is a technique for drawing a kind of visual road map of how concepts are connected and understood. By drawing a concept map of an “Earthwatch” script, for example, you can identify the key concepts and show the relationships between them, helping your students understand more clearly the meaning of the script.

“Concept” means a regularity in an object or event that is labeled with a word, like “bottles,” “air,” “recycling,” and “pollution.” A concept is given new meaning when it is linked with other concepts, as in “recycling the bottles” or “pollution in the air.” Concepts also change when new connections are made. Consider this sequence using the concept “grass”: “grass is green,” “grass is a plant,” “grass is a monocot,” “grass photosynthesizes.” With each phrase, the meaning of the concept “grass” becomes broader and richer.

Concept mapping can foster more creative, meaningful, long-term learning as well as more positive feelings about learning. Students from grade 1 on have been taught how to use concept mapping to help them learn more effectively. By drawing concept maps, students begin to see the relationships between new information and what they already know. The new information then becomes more relevant to them and can be recalled more readily. In addition, in mapping even old and familiar material, students sometimes recognize new relationships and meanings.

By examining your students’ concept maps with them, you can learn what they know and think about a subject. (Are they misunderstanding an idea or missing a concept? Do they feel confused or frustrated? Or do they understand the topic with great insight in a way you never expected or even thought of yourself?) You can then tailor the lesson to fit their needs. Thus, concept maps help us take into account the most important factor influencing learning—what students already know—and then teach them accordingly. Also, by comparing maps that students draw before a lesson with those they draw after it, you can assess how well a student understands what you taught.

For a comprehensive discussion of concept mapping and its uses, see Novak and Gowin (1984, pp. 15-54).

How to Draw a Concept Map

“Earthwatch” scripts are excellent materials for concept mapping because they offer short, concise descriptions of important subjects or issues.

Step 1: Select and read an Earthwatch script. Circle the key concepts necessary for understanding the script (Figure 1).

Step 2: Decide which concept is the most important or most inclusive idea, and make a list with this concept at the top. Find the next most general concept in the script and write it next. Continue to rank-order all the concepts. There is no single “correct” way to rank the concepts because the meaning of the text may be interpreted in more than one way (Figure 2).
Plants and Pollutants

It's no secret that air pollution can make people ill. But did you know it can also take a toll on plants? One Wisconsin scientist says air pollution may reduce yields of some farm crops as much as 20 percent.

Sulfur dioxide and ozone are the air pollutants that most commonly harm plants. Sulfur dioxide results from the burning of fossil fuels such as oil and coal. It is troublesome mainly near factories and power plants. Ozone, on the other hand, is a by-product of automobile exhaust and is much more widespread.

Theodore Tibbitts, a horticulture professor at the University of Wisconsin-Madison, says these pollutants seldom kill plants, and they usually do not harm their flowers or fruit. But he says they do injure leaves, and that's where the trouble begins.

Sulfur dioxide and ozone can enter a leaf through pores on its surface. Once inside, the pollutants disrupt the photosynthetic process in the leaf. This stunts the growth of leaves and can reduce the yields of many crops.

Air pollution is not the farmer's biggest worry. Tibbitts says drought, floods, frost, insects and disease can all take a bigger toll on crops, and the farmer, understandably, is more concerned about coping with those threats.

Nevertheless, says Tibbitts, air pollution's effects on plants are a legitimate concern. He says planting more tolerant crops in polluted areas could help. But the most important thing, he says, is to control pollution from industry and automobiles in the first place.

Figure 1: Key Concepts in “Plants and Pollutants”

Figure 2: Concepts in “Plants and Pollutants” in Declining Order of Importance
resulting from burning 1 fossil fuels such as oil and coal at factories and power plants in the forms of sulfur dioxide ozone automobile exhaust

Figure 3: A Concept Map of "Plants and Pollutants"
Step 3: Begin constructing a concept map by placing the broadest, most inclusive concept at the top of a large piece of paper. Work down, adding more specific concepts.

Step 4: Join the concepts with lines and label the lines with linking words that show meaningful connections between the concepts. One way to practice map-making is to write concepts and linking words on paper rectangles and then rearrange these as you see new relationships.

Step 5: Now look for links between concepts and label these connections. You can add concepts not in the text to increase the comprehensiveness of the map or to clarify your understanding of the concepts. You also can add examples of concepts (e.g., soybeans, potatoes, tobacco, grapes, and peas are examples of the concept “crop”) (Figure 3).

Step 6: Remember that there is no one way to draw a concept map. As your understanding of relationships among concepts changes, so will your map. Draw a new map if you see new ways to link concepts. Keep your maps and refer to them to help you see how your understanding evolves.

Now that you and your students have drawn (and redrawn) concept maps of a script, have one of the map-makers “read” the map so that it’s clear to the other students what the script is about. Are there any concepts you would like to add to help you understand the script more completely? Do you have questions about the content that you’d like to investigate? (Example questions for the script mapped in figures 1-3 are presented in the following section, Questions for Classroom Investigation.) Come up with your own questions for the script you mapped, then find the answers to some of them. Remember that concept mapping can be used to clarify any subject.

Scoring Criteria

Novak and Gowin (1984, p. 36) suggest using the following scoring system to evaluate how well your students have integrated and understood this exercise (Figure 4).

- **Propositions**: Is the relationship between two concepts indicated by the connecting line and linking word(s)? Is the relationship valid? For each meaningful, valid proposition shown, score 1 point.

- **Hierarchy**: Does the map show hierarchy? Is each subordinate concept more specific and less general than the concept drawn above it (in the context of the material being mapped)? Score 5 points for each valid level of the hierarchy.

- **Cross links**: Does the map show meaningful connections between one segment of the concept hierarchy and another segment? Are the relationships shown significant and valid? Score 10 points for each cross link that is both valid and significant, 2 points for each cross link that is valid but does not illustrate a synthesis between sets of related concepts. Cross links can indicate creative ability; therefore, special care should be taken in identifying and rewarding its expression. Unique or creative cross links might receive special recognition or extra points.
Examples

Specific events or objects that are valid examples of those designated by the concept label can be scored 1 point each.

Criterion (optional)

In addition, a criterion concept map can be constructed and scored for the material to be mapped, and the student scores divided by the criterion map score to give a percentage for comparison. (Some students may do better than the criterion and receive more than 100% on this basis.)

Hierarchy

Level 1

Level 2

Level 3

Level 4

Cross Links (if valid and significant) 10 x 2 = 20

Examples (if valid) 4 x 1 = 4

58 points total

Figure 4: Scoring Model for Concept Maps
Questions for Classroom Investigation

Although each script in *Earthwatching III* presents facts and issues on a topic, a script may leave some questions unanswered and may stimulate other questions worth investigating. *Earthwatching III* can suggest investigations not only in science but in art, history, literature, geography, social studies, mathematics and other disciplines. We encourage you and your students to ask further questions about the topics discussed in this book and find imaginative ways to incorporate them into your studies.

To get you started, here are some examples of spinoff questions from several scripts. Each question could serve as a subject for classroom investigation.

"Plants and Pollutants"

- What is combustion? What are the results of this process?
- How do we develop pollution-tolerant plants?
- How can sulfur dioxide and ozone pollution affect people?
- Why is sulfur dioxide pollution less pervasive than ozone pollution? Is sulfur dioxide pollution a problem only near factories?
- Why is ozone called a "by-product" of car exhaust? How does it form? What is the chemical formula for ozone? Why is ozone so reactive?
- What is the structure of a leaf? How does ozone enter a leaf? What does ozone do to a leaf? How does this affect the plant?
- Should farmers be more concerned about ozone pollution than they are? Should other people be more concerned, too? Why?
- How do we measure ozone levels? How would you find out about ozone levels in your state? In the United States?
- Where is ozone monitored in your state? In the United States?
- Are the causes and effects of the ozone problem discussed in the script the same as or different from those of the ozone layer in the upper atmosphere?
- What are some other forms of air pollution?
- How can we control air pollution?
- What can you do to reduce ozone and other forms of air pollution?
"The Snowflake Man"

- How do snowflakes form? Why do they have six sides?
- Do people still study snowflakes? Where and why (e.g., in avalanche control, military research, oil rigs, glaciers, the Antarctic, art and design)?
- What effect does snow have on the landscape, on wildlife, on people (e.g., insulation, shelter, mobility, food availability)?
- In our society, what are peoples' attitudes towards snow? Is snow considered beautiful, a nuisance? What attitudes about snow are portrayed on television weather forecasts? Why do we often have a negative view of snow? Do you like snow? Why or why not? What are some other societies' attitudes about snow (e.g., the Laplanders and Inuit peoples of the Arctic)?
- How is snowfall recorded? Is there as much snowfall in your state now as there used to be?
- Have weather patterns changed since Snowflake Bentley's time?
- Obtain annual snowfall records for your region and draw a graph. If you see long-term changes in snowfall, what do you think are some possible reasons for the changes?

"Big Blasts and Bumper Crops"

- What are volcanoes? How do they form? Where do they form?
- What role do volcanoes play in the Earth's evolution?
- Why do you think paintings of dinosaurs usually have volcanoes in the background? Is this an accurate portrayal of the Earth when the dinosaurs were living?
- Although a volcanic explosion on the equator may benefit U.S. corn crops, what are the effects of the explosion where it happens (e.g., El Chichon in Colombia, Mount St. Helens in Washington)?
- What other ways can volcanic activity be beneficial or harmful to people (e.g., geothermal energy in Iceland and New Zealand, poisonous gas in Cameroon)?
- What are some historic "big bangs" (e.g., Krakatoa, Vesuvius)? What eventually happened to the ash that was spewed into the upper atmosphere by these eruptions?
- If ash from volcanic eruptions affects the world's weather, what do you think dust and smoke from a nuclear explosion could do?
- Describe what is meant by the concept "spaceship Earth" or the phrase "everything is connected to everything else."
- What are some folk stories/fears/myths about volcanoes?
- How well can scientists predict when volcanoes will erupt? How do they do this?
Example Activity

Earthwatching III can be useful in many curriculum areas. The following activity shows how the script, "Dumping Diapers," could be used in a math unit to illustrate concepts of measurement. It also suggests how to use the same script and subject to teach lessons in home economics and to help students make the connection between classroom activities and the world outside of school. We encourage you to devise similar activities from the many other scripts in this book.

Activity

Objective: To help students develop skills in measurement and cost analysis and interpret their findings in the context of an actual environmental problem.

Grades: 7-12.

Subjects: Mathematics, social studies, home economics, health, environmental education.

Background: Earthwatching III script "Dumping Diapers" (page 85).

Materials: Disposable diapers, metric ruler, gram balance, graduated cylinder, container for saturated diaper, water.

Procedure

Step 1. Measure a dry disposable diaper as follows:
 a. Use the gram balance to calculate weight (to the nearest gram).
 b. Use the metric ruler to calculate volume in cubic centimeters.

Step 2. Measure a saturated disposable diaper as follows:
 a. Use the graduated cylinder to calculate maximum volume of water a disposable diaper can hold (to the nearest milliliter).
 b. Use the balance to calculate (1) the weight of the saturated diaper and (2) the weight of the water alone.
 c. Use the ruler to measure the diaper’s volume (to the nearest cubic centimeter).

Step 3. Answer the following questions:
 a. Assume that the maximum weight limit for a typical garbage can is 18.5 kilograms. How many saturated diapers can it hold?
b. Read the Earthwatching III script “Dumping Diapers.” How many days will it take a family with one young child to accumulate 18.5 kilograms of saturated disposable diapers (round to the nearest 0.25 day)?

c. If garbage collection is once a week, how many garbage cans will a family that uses disposable diapers need for two young children?

d. If a garbage truck can carry an average of 5,900 kilograms of refuse, how many garbage cans full of saturated disposable diapers can one truck haul without exceeding its capacity?

e. One garbage truck can hold a week’s worth of saturated disposable diapers from how many children in all?

f. Calculate the volume of a typical one-car garage in cubic meters. If the garbage collector goes on strike and a family with one young child has to store its saturated disposable diapers in the garage, how long will it be before the garage is full?

g. Calculate the total number of diapers a child will need from birth to age two. Calculate the mass and volume of both dry and saturated disposable diapers used by the child during this time.

Once your students have done the measurements and mathematical calculations, you can either consider the lesson complete or discuss the real-life implications of the measurements they derived. Here are some questions raised by the “Dumping Diapers” activity that you may wish to consider with your students.

- What happens to disposable diapers after people throw them away?
- About how many children in your community are under the age of two? If all of them used disposable diapers, how much landfill space would be filled with diapers in one year? Do you think this is a good way to use land? Why or why not?
- How many years will it be before your community landfill is full? What will your community do with its waste after that?
- What laws does your community have for treating human waste? Do these laws apply to waste contained in disposable diapers?
- Assume that your local store sells disposable diapers in two sizes of bags: 48 per bag for $10.99 and 18 per bag for $4.49. What would a sales tax of 5 percent add to the cost of each bag? Which is your best buy? Calculate the percentage of your savings.
- The smaller bag has a rebate coupon: If you mail in labels from three small bags, you’ll get a $1 rebate. Considering the rebate, which is your best buy (including the 5 percent tax)? Calculate the percentage of your savings.
Assume that a child requires 48 cloth diapers, which can be washed and reused, from birth to age two. A package of 12 cloth diapers costs $8.37. What is the total cost to purchase cloth diapers for one child, including a 5 percent sales tax? What is the cost difference between a two-year supply of disposable diapers and a two-year supply of cloth diapers?

What other costs should parents consider when using cloth diapers (e.g., detergent, electricity, water, washer and dryer wear, time)?

A commercial diaper service has compiled the following statistics about diaper costs (toddlers often require 90 or more diapers per week):

- 90 diapers, home delivery service: $10.15/week
- 90 disposable diapers: $18.50/week
- 90 diapers, home-laundered: $9.36/week

(including estimated costs of detergent, water, electricity, washer and dryer, etc.)

If you were a parent, which diaper option would you choose? Why? Is cost your only concern? Have you considered other pros and cons, such as energy use, environmental impacts, convenience, your child’s comfort, etc.?

About 80 million children are born in the world every year. If all of them used disposable diapers, how many disposables would be consumed every year? What do you think about this?

Investigate what people in other parts of the world use to diaper their children.

Brainstorm ways that old cloth diapers can be recycled-used for other purposes.

Investigate how much paper pulp is required to manufacture a disposable diaper. How many trees must be cut to make the diapers used by one child from birth to age two?

Investigate the possible health effects of disposing of human wastes in landfills.
Infusing Earthwatching III into a Curriculum

At first glance, "infusion" may sound complicated, but it is really a simple idea. It's also an important one. Infusion means using environmental topics like those in Earthwatching III as a vehicle to achieve your teaching objectives in math, art, languages-in all subjects (not only science) at all grade levels. By doing this, you integrate environmental education into the regular curriculum rather than treat it as a separate subject.

Adding environmental content to the curriculum may require additional planning and instruction. The exact amount depends on how much information you have at hand and how much more you would like to know about a topic. But you do not have to be an expert on the environment to use environmental topics in your classes. By selecting examples of personal interest to you and your students and investigating them together, everyone can learn more. Such inquiry can enhance your teaching and your students' enthusiasm about learning.

The following paragraphs describe some environmental topics or activities that can be addressed in various curriculum areas according to A Guide to Curriculum Planning in Environmental Education (Engleson 1985, pp. 60-62).

Agriculture
- Groundwater contamination from agricultural chemicals; organic and inorganic pest controls; soil erosion, nutrients, and conservation; water conservation, irrigation, salinity, and nonpoint-source pollution; threatened and endangered species and habitats; energy issues; biotechnology and its impact on agriculture; economics and environment.

Art
- The nature of aesthetics; environmental ethics; natural and urban environmental aesthetics; aesthetics in land-use planning; the role of art in communicating environmental messages; architecture; historic preservation.

Foreign Language
- Global perspectives; how we perceive people of other countries; how people of other countries view us; commonalities and differences among peoples; how people of other countries feel about and deal with environmental issues; how we influence the environments of other nations. (Study current publications to learn about other nations' environmental concerns, such as France's position on nuclear energy, the effects of acid rain on German forests, and the destruction of tropical rain forests in Latin America.)

Health Education
- The relationships among physical, mental, and environmental health; occupational health; consumer health; hazardous chemicals in the home and workplace; the role of government in health issues; air, water, and noise pollution; healthful recreation; nutrition; disease; population issues.

Home Economics
- Water and energy use and conservation; excess packaging and solid waste disposal; recycling; food additives; hazardous household chemicals.

Industrial Education
- Resource use and conservation (energy, raw materials, water, land, air, etc.); use and disposal of hazardous chemicals; aesthetics in structural design; social and environmental responsibility; creativity; alternative technologies.
<table>
<thead>
<tr>
<th>Subject</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language Arts</td>
<td>Use environmental subjects in creative writing; reading; dramatics; speech; journal, editorial, letter, article, script, and report writing; research; literature; literary analysis.</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Use environmental subjects when collecting and analyzing data; communicating results through charts and graphs; studying geometric shapes and patterns.</td>
</tr>
<tr>
<td>Physical Education</td>
<td>Canoeing, backpacking, camping, fishing, hiking, skiing, swimming, etc.; outdoor ethics; safety; pros and cons of hunting; consumptive versus non-consumptive outdoor activities; relationship of environment to human physical and mental health.</td>
</tr>
<tr>
<td>Science</td>
<td>Develop problem-solving skills and understand relationships among science, technology and society.</td>
</tr>
<tr>
<td>Social Studies</td>
<td>Describe, study, and analyze the relationships of human actions and behaviors to the environment and their impacts on the environment; develop citizenship skills, geography concepts, map skills; consider possible futures.</td>
</tr>
</tbody>
</table>

The next two sections describe in greater detail how to use Earthwatching III in social studies and health education, two curriculum areas for which it is especially suited.
Using Earthwatching III in Social Studies

The following chart correlates scripts in Earthwatching III with content that the Wisconsin Department of Public Instruction suggests be covered in K-12 social studies education. It is based on chapter 2 of A Guide to Curriculum Planning in Social Studies (Hartoonian 1986).

The chart is by no means all-inclusive; it merely provides examples of where Earthwatching III scripts might be used in the social studies curriculum. We encourage you to review the many other scripts in this book that address social issues and develop ways to incorporate their content into your social studies program at all grade levels.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Grade</th>
<th>Relevant Curriculum Questions</th>
<th>Relevant Scripts/Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air pollution</td>
<td>K</td>
<td>How can you care for your environment?</td>
<td>The Smog's on the Other Flue/ 7, Poolside Chat/ 66, Victims of Pollution/ 81, Homemade Air Pollution/ 99, and others ▼</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 What are the current trends in resource use? Is it possible to change these trends? How?</td>
<td></td>
</tr>
<tr>
<td>Hunger</td>
<td>K</td>
<td>How do different people meet their needs?</td>
<td>Bad Taste?/ 94, This Spud's for You/ 95, Feeling the Strain/ 110, Tragedy of a Continent/ 121, Where Hunger Strikes/ 122, and others ▼</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 How are the United States and the rest of the world interdependent? What are current trends in resource use and population growth? What alternatives exist for changing these trends?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 What issues, crises, and opportunities face each cultural region of the world?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 What are the causes and consequences of an uneven distribution of wealth in the world?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-9 To what degree is population growth a problem? What issues of today are likely to be with us in the future?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-11 How is your community interdependent with the rest of the world?</td>
<td></td>
</tr>
<tr>
<td>Recycling</td>
<td>1</td>
<td>How does your school recycle materials? Your neighborhood? Your community?</td>
<td>New Life for Old Milk Jugs/ 77, Recycling Simplified/ 81, Return of the Returnables/ 83, Recycling at a Ripe Age/ 84, New Deposit, Big Return/ 85, Shifting Gears/ 86, and others ▼</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 What are the current trends in resource use? Is it possible to change these trends? How?</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Grade</td>
<td>Relevant Curriculum Questions</td>
<td>Relevant Scripts/Page Numbers</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>What changes have taken place in the way people use resources and produce goods and services?</td>
<td>(Continued from page 141)</td>
</tr>
<tr>
<td></td>
<td>10-11</td>
<td>How did life in the United States change during and after World War II?</td>
<td></td>
</tr>
<tr>
<td>Oceans</td>
<td>2</td>
<td>What are oceans? How many oceans can you find on a globe? What are coastlines? How do coastlines differ from each other? How close do you live to the nearest ocean?</td>
<td>The Fear of Cod/ 20, Surf and Turf/ 45, Mussel-bound Oil Rigs/ 51, Killer Waves/ 51, Skimming the Surface/ 53, A Plague of Plastic/ 86, Underwater Relief / 98, and others ▼</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>How do oceans affect weather and climate? How do they affect our lives?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>How do oceans influence coastal communities? In what ways do people make their livings from the oceans?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>How are people and oceans interrelated?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9-10</td>
<td>How do people and society affect oceans? Is it possible to harm oceans? How?</td>
<td></td>
</tr>
<tr>
<td>Transpor-tation</td>
<td>2</td>
<td>What forms of transportation are available in your community? Other communities?</td>
<td>A Better Idea/ 66, Poolside Chat/ 66, A Saline Solution/ 78, Travel Expenses/ 107, and others ▼</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>How might technology influence our future?</td>
<td></td>
</tr>
<tr>
<td>Climate</td>
<td>3</td>
<td>How do geography and climate affect communities?</td>
<td>Big Blasts and Bumper Crops/ 3, No Previous Experience/ 3, Behind the Drought/ 4, The South Rises Again/ 47, Our Brimming Great Lakes/ 48, History on the Bottom of the Sea/ 52, and others ▼</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>What is the nature of relationships between people and Earth systems? How are nations interdependent?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9-10</td>
<td>What do people mean when they say the world has become a global community?</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Grade</td>
<td>Relevant Curriculum Questions</td>
<td>Relevant Scripts/Page Numbers</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cities</td>
<td>3</td>
<td>Why do people live in cities? How do cities influence the environment? How does the size of a city influence the way its people live?</td>
<td>Star Light, Star Bright/ 7, Down the Drain/ 49, An Island in Distress/ 50, Thirst Aid/ 60, Leaky Pipes/ 61, City Limits/ 87, Paying the Piper/ 88, From Boom to Bust/ 89, Pushing the Limits/ 115, Thailand’s Sinking City/ 115, Supercity/ 116, and others</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>What is the nature of relationships between people and earth systems? How are nations interdependent?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-9</td>
<td>What important issues do nations face today?</td>
<td></td>
</tr>
<tr>
<td>Farming</td>
<td>3</td>
<td>What special problems do farmers face today? How do farming methods compare in different places?</td>
<td>Plants and Pollutants/ 6, New Roots/ 33, Salt of the Earth/ 35, Preventable Pollution/ 36, Harvest of Dust/ 38, Dust to Ashes/ 68, Chemical Dependence/ 118, Another Japanese Success/ 120, and others▼</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>What changes have taken place in the ways people use resources?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-9</td>
<td>What important issues do nations face today? How are technology and global interdependence changing the economy of our nation and the world?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>How might technology influence our future?</td>
<td></td>
</tr>
<tr>
<td>Great Lakes</td>
<td>2</td>
<td>What are the Great Lakes? Where are the Great Lakes on a globe? How close do you live to the nearest Great Lake? Which states and provinces border the Great Lakes?</td>
<td>The South Rises Again/ 47, Our Brimming Great Lakes/ 48, A Costly Diversison/ 48, Probing a Great Lake’s Plumbing/ 49, Down the Drain/ 49, Hanging Ten on Lake Michigan/ 57, and others▼</td>
</tr>
<tr>
<td>Topic</td>
<td>Grade</td>
<td>Relevant Curriculum Questions</td>
<td>Relevant Scripts/Page Numbers</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>How do the Great Lakes affect weather and climate in the region around them? What cities are located on the Great Lakes? Why were these cities built on the lakes? (Continued from page 143)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-6</td>
<td>Who were the first people to live near the Great Lakes? Which early European explorers visited the Great Lakes? How was settlement of your state or province influenced by the Great Lakes? How and when did the Great Lakes get their names?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>What role do the Great Lakes play in international trade?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>How and why do the United States and Canada share the Great Lakes?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>What do the Great Lakes states and provinces have in common with other states and provinces? How are they different?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9-10</td>
<td>Where do the water and pollution in the Great Lakes come from? Which lakes are cleanest? Which are most polluted? How can lake pollution be prevented?</td>
<td></td>
</tr>
<tr>
<td>Political boundaries</td>
<td>4</td>
<td>What states or provinces are your neighbors? How do maps tell us special stories about our region?</td>
<td>Acid Revelations/ 8, Surf and Turf/ 45, The South Rises Again/ 47, A Costly Diversion/ 48, Agreeable States/ 83, Feeling the Strain/ 110, Antarctic Disharmony/ 117, and others▼</td>
</tr>
<tr>
<td>Resources and conflict</td>
<td>5</td>
<td>Why did the colonists seek independence from European nations?</td>
<td>The Tree that Started a War/ 28, Grim Harvest/ 116, Aftermath of War/ 117, Antarctic Disharmony/ 117, and others▼</td>
</tr>
<tr>
<td>Topic</td>
<td>Grade</td>
<td>Relevant Curriculum Questions</td>
<td>Relevant Scripts/Page Numbers</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>How is the future of the United States tied to the future of the world? What are the causes and consequences of uneven distribution of wealth and resources in the world?</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>How did imperialism and colonialism contribute to exploitation, tensions, and confrontations that led to international conflict?</td>
<td>9-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>What were the major causes of the American Revolution? How do geography, land settlement, cultural conflict, and history interrelate?</td>
<td>10-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>How do other cultures view our culture? What have been the results of international conflict? What are the challenges to peace today?</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>How has geography influenced population in Asia?</td>
<td>9-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>How are political decisions made? How can citizens participate in and influence politics?</td>
<td>8-9</td>
<td>Victims of Pollution/ 81, Burden or Blessing?/ 82, Towards Greater Safety/ 82, Return of the Returnables/ 83, Ski Control/ 87, and others</td>
<td></td>
</tr>
<tr>
<td>What are the major natural resources?</td>
<td>5</td>
<td>Bright ideas/ 65, Window Breakthrough/ 65, Looks Good on Paper/ 67, Cold Facts for the Hot Tropics/ 68, Dust to Ashes/ 68, Quest for Fuel/ 69, Hawkeye Hydra/ 70, Carrying the Fire/ 70, and others▼</td>
<td></td>
</tr>
<tr>
<td>What changes have taken place in the ways people use resources?</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Grade</td>
<td>Relevant Curriculum Questions</td>
<td>Relevant Scripts/Page Numbers</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Hazardous waste</td>
<td>3</td>
<td>How do communities try to solve their problems?</td>
<td>Hidden Polluters/ 50, Not-So-Clean Industry/ 73, Punchless PCBs/ 74, Household Hazards/ 74, Costly to the End/ 75, From Here to Eternity/ 75, The Wrong Target/ 98, and others ▼</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>What could happen to the natural resources of your state or province if they were used wisely or unwisely? What is being done to protect them?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>What major environmental issues do we face today? What are some possible solutions?</td>
<td></td>
</tr>
<tr>
<td>Water pollution</td>
<td>K</td>
<td>How can you care for your environment?</td>
<td>Skimming the Surface/ 53, Scales of Justice/ 54, Tourists and Toxins/ 54, Lake Woes, Begone! / 55, Turnaround at Tahoe/ 88, and others ▼</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>What are the current trends in resource use? Is it possible to change these trends? How?</td>
<td></td>
</tr>
<tr>
<td>Global environment</td>
<td>1</td>
<td>What is a globe? What can it tell us?</td>
<td>Big Blasts and Bumper Crops / 3, Protecting “Our” Birds/ 14, Competition from Abroad/ 16, Not a Drop to Drink/ 61, Grim Harvest/ 116, and others ▼</td>
</tr>
<tr>
<td></td>
<td>9-10</td>
<td>What do people mean when they speak of a world community?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-11</td>
<td>What global issues does the United States face? How are political and other institutions responding to those issues? How is your community an example of global interdependence?</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>Grade</td>
<td>Relevant Curriculum Questions</td>
<td>Relevant Scripts/Page Numbers</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>The future</td>
<td>7</td>
<td>How is the future of the United States tied to the future of the world?</td>
<td>This Land is Your Land/ 40, Locked Out/ 42, From Here to Eternity/ 75, Feeling the Strain/ 110, A Matter of Proportions/ 110, Crisis? What Crisis?/ 111, and others▼</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>What challenges is the U.S. likely to face in the future?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-9</td>
<td>What are some important issues we face today? How will technology and increasing global interdependence change the economies of our nation and world?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9-10</td>
<td>What will our planet be like in the future?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>How do other cultures view our culture? How has technology changed the way Americans relate to each other and to the land?</td>
<td></td>
</tr>
</tbody>
</table>
Using Earthwatching III in Health Education

The following chart correlates scripts in Earthwatching III with content that the Wisconsin Department of Public Instruction suggests be covered in K-12 health education. It is based on Table 1 in A Guide to Curriculum Planning in Health Education (Bradley 1985).

The chart is by no means all-inclusive; it merely provides examples of where Earthwatching III scripts might be used in the health instruction curriculum. We encourage you to review the many other scripts in this book that address human health issues and develop ways to incorporate their content into your health program at all grade levels.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Grade</th>
<th>Appropriate Content Areas</th>
<th>Relevant Scripts/Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-12</td>
<td>Environmental health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-12</td>
<td>Consumer health</td>
<td></td>
</tr>
<tr>
<td>Nutrition in the Third World</td>
<td>1-12</td>
<td>Nutrition</td>
<td>Waiter, There's No Fly in My Soup/93, Bad Taste/94, Tragedy of a Continent/121, Where Hunger Strikes/122, and others</td>
</tr>
<tr>
<td>Sources of food</td>
<td>1</td>
<td>Nutrition</td>
<td>Fish Fat Facts/93, Waiter, There's No Fly in My Soup/93, Chemistry, Flavors, and Fillets/95, This Spud's for You/95, and others</td>
</tr>
<tr>
<td>Recycling</td>
<td>3-6</td>
<td>Environmental health</td>
<td>New Life for Old Milk Jugs/77, Recycling Simplified/81, Return of the Returnables/83, Recycling at a Ripe Age/84, New Deposit, Big Return/85, Shifting Gears/86, and others</td>
</tr>
<tr>
<td>Air pollution and health</td>
<td>3-12</td>
<td>Environmental health</td>
<td>Victims of Pollution/81, The Smell of Success/97, Homemade Air Pollution/99, Smoke Alarm/100, and others</td>
</tr>
<tr>
<td>Hunger</td>
<td>3-12</td>
<td>Nutrition</td>
<td>Waiter, There's No Fly in My Soup/93, This Spud's for You/95, Tragedy of a Continent/121, Where Hunger Strikes/122, and others</td>
</tr>
<tr>
<td>Water pollution and health</td>
<td>3-12</td>
<td>Environmental health</td>
<td>Leaky Pipes/61, Victims of Pollution/81, Gut Reaction/101, and others</td>
</tr>
<tr>
<td>Topic</td>
<td>Grade</td>
<td>Appropriate Content Areas</td>
<td>Relevant Scripts/Page Numbers</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Occupational health and safety</td>
<td>4-12</td>
<td>Community health, consumer health</td>
<td>Not-So-Clean Industry/ 73, Victims of Pollution/ 81, Towards Greater Safety/ 82, Perilous Panic/ 96, Dangers of Development/ 121, and others</td>
</tr>
<tr>
<td>Disease</td>
<td>5-12</td>
<td>Prevention and control of disease</td>
<td>Get the Lead Out/ 97, Homemade Air Pollution/ 99, Catching Ultraviolet Rays/ 99, Smoke Alarm/ 100, Gut Reaction/ 101, and others</td>
</tr>
<tr>
<td>Hazardous waste</td>
<td>10-12</td>
<td>Environmental health</td>
<td>Hidden Polluters/ 50, Not-So-Clean Industry/ 73, Punchless PCBs/ 74, Household Hazards/ 74, Costly to the End/ 75, From Here to Eternity/ 75, The Wrong Target/ 98, and others</td>
</tr>
<tr>
<td>Population</td>
<td>10-12</td>
<td>Family life, environmental health</td>
<td>Feeling the Strain/ 110, A Matter of Proportions/ 110, Crisis? What Crisis?/ 111, Pushing the Limits/ 115, Where Hunger Strikes/ 122, and others</td>
</tr>
</tbody>
</table>
Sources of Additional Information

Thousands of public and private organizations throughout the United States and Canada offer a variety of materials-books and pamphlets, films and videotapes, computer software, and curricula-helpful to environmental educators.

One of the most comprehensive lists and descriptions of these organizations is the Conservation Directory published annually by the National Wildlife Federation, 1400 Sixteenth Street N.W., Washington, DC 20036-2266. (Cost of 1990 edition: $18 plus $3.50 shipping and, in certain states, sales tax). Among other things, this excellent directory lists sources of information and audio-visual materials on conservation and environmental topics, current state education agency coordinators for environmental education, and other useful directories.

In addition to Earthwatching III, the Sea Grant Institute and the Institute for Environmental Studies at the University of Wisconsin-Madison offer many publications, including a selection of educational materials, on the Great Lakes and other environmental topics. For lists and prices, contact the UW Sea Grant Institute, 1800 University Avenue, Madison, WI 53705 (phone 608/ 263-3259), and the Institute for Environmental Studies, Room 15 Science Hall, 550 N. Park Street, Madison, WI 53706 (phone 608/ 263-3064).

References

Bradley, Chet. 1985. A Guide to Curriculum Planning in Health Education. Wisconsin Department of Public Instruction, P.O. Box 7841, Madison, WI 53707.

Engleson, David C. 1985. A Guide to Curriculum Planning in Environmental Education. Wisconsin Department of Public Instruction, P.O. Box 7841, Madison, WI 53707.

Index

A

Agriculture
 Biotechnology 111
 Chemical use 35, 118
 Climate effects 3, 116
 Conservation practices 36-37
 Crops 33, 95
 Effects of air pollution 6
 Energy from grain dust 68
 Energy use 67
 Foreign 38, 118, 120-122
 Irrigation 59, 61
 Near urban areas 87
 Pests and pesticides 23, 33-34
 Salt on cropland 35

Air Pollution
 Acid rain 8, 53, 55
 Chlorofluorocarbons (CFCs) 8
 Effects on agriculture 6
 Effects on astronomy 7
 Foul odors 80
 From wood-burning stoves 7
 Historical 73
 Indoor 99-100
 Near parks and preserves 6

B

Birds
 Dusky seaside sparrow 14
 Migration 13-15
 Refuges 17
 Threats to Florida seabirds 15

C

Cities
 Air quality 80
 Housing 89
 Parks 108

D

Development
 Housing 89
 Industrial 120
 Land use regulations 88
 Near parks and preserves 6, 40-41, 87

Urban planning 87-89
Urban problems 115-116
Waste disposal 81
Water use 49, 60-61

Climate
 Disruptions 3, 116
 Drought 4, 121-122
 Effect on Great Lakes 48
 Evolution of Earth's climate 52
 Global warming 3

Coasts
 Coastal oceans 45
 Development 39
 Ecology 53, 59
 Gulf of Mexico wetlands 37
 Severe weather 51
 Wildlife 15, 26

Conflict
 American Revolution 28
 Ethiopia 112
 Genetic engineering 35
 Nuclear war 116
 Over Antarctica 117
 Over global resources 110
 Over natural resources 110, 122
 Over wilderness preservation 40
 Vietnam 117

Conservation
 Foreign 109, 117
 In Florida Everglades 41
 In New Jersey 40
 Prairie plant communities 38
 Wilderness preservation 42
Third World 105, 115-121
Urban 36, 87-89
Worldwide 111

E
Ecosystems
Aquatic 18-19, 53, 58
California chaparral 29
Forest 18
Gulf Coast 37
Marine 46
Prairie 38

Endangered Species
Captive breeding 11, 16
Clams and mussels 19
Extinction 14
Gorillas 27
Habitat loss 14
Manatees 26
Poaching 12
Threats to Florida seabirds 15

Energy
From grain dust 68
From oceans 68
Hydroelectric 70
Nuclear 69-70, 75
Oil 69
Solar 77
Wood-burning stoves 7

Energy Conservation
Automobiles 66
In industry 67
Lighting 65
On farms 67
Ride sharing 66
Windows 65

F
Fish/Fisheries
Commercial fishing 45-47
Effects of plastic waste 86
Effects of pollution 54-55
Exotic species 18-19
Fish consumption 93, 95

Great Lakes 83
Hatcheries 20
Sharks 20
Sport fishing 45, 55, 76

Food
Fish 93, 95
Insects 93
Krill 46
Potatoes 95
Shortages 116, 121-122
Waste in the United States 94

Forests
Amazon River basin 118
Autumn foliage 28
Forest fires 29
National Register of Big Trees 29
New England 28
Protection in India 109

G
Great Lakes
Exotic species 18-19
Governors' agreement 83
Groundwater near Lake Michigan 49
Maritime history 56
Plastic waste 86
Severe storms 5
Sport fishing 45
Surface layer 53
Surfing 57
Water diversions 48
Water levels 48
Water quality 47, 49, 54
Water sports for the disabled 57

Groundwater
Near Lake Michigan 49
Pollution from storage tanks 50
Protection 50, 60

H
Hazardous Materials
In households 74
In microelectronics industry 73
In Niagara River 54
In the Great Lakes 83
In water 76
Pesticides 98
Polychlorinated biphenyls (PCBs) 74
Radioactive waste 75
Toxaphene 47
Workplace 82, 121
Health
Diet in Third World 94
Effects of sunbathing 99
Fish consumption 93, 95
Hypothermia 101
Insect consumption 93
Medicine 96, 98, 111
Nature as a cure 42
Occupational 82, 96, 118, 121
Poisons 98
Pollution hazards 81, 83, 97, 99-100
Potato consumption 95
Sense of smell 97
Starvation 121
Waters (see also Great Lakes)
Effects of acid rain 55
Lake Tahoe 88
Surface layer 53
Land Use
Agricultural 37-38
Amazon River basin 118
Effect on groundwater 50
In Florida Everglades 41
Industrial 6
Louisiana wetlands 37
On federal land 40, 42
Regulations 87-88
Residential 39, 41
Third World 122
Urban 87-89
Wildlife refuges 39
Law and Regulation
Antarctic Treaty 117
Land use regulations 39, 87-88
Law of the Sea 45, 47
Occupational health 82
Penalties for pollution 54, 81
Pollution control 7-8, 50, 80, 82-83
Recycling 83
Smoking 100
Mammals
Bats 25
Bears 25
Beavers 24
Dolphins 13
Elephants 12
Gorillas 27
Killer whales 26
Manatees 26

Natural Events
Desertification 83, 121
Drought 122
Floods 58
Forest fires 18, 29
Hurricanes 39
Precipitation 5
Seasonal changes 28
Severe storms 5
Tsunamis 51
Volcanic eruptions 3
Weather 4

Natural History
Animals and myths 21
Asteroid impacts on Earth 52
Bat behavior 25
Bear behavior 25
Bird migrations 13-15
Dinosaurs 21
Dragonflies 23
Earthworms 34
Evolution 22
Evolution of Earth's climate 52
Great Lakes water levels 48
Killer whales 26
Oldest plant 27
Plants 30
Shark behavior 20

Navigation
Great Lakes 5, 56
Organisms in ballast water 18

Oceans
Antarctic Ocean 46
Commercial fishing 46, 51
Crater in North Atlantic 52
Desalination 60
Exotic species 18

Fisheries 20
Law of the Sea 45, 47
Marine mammals 11, 13
Marine plants 34
Maritime history 105
Medical products from 98
Oil exploration in 69
Oil spills 80
Plastic waste 86
Pollution 53
Research 52
Surface layer 53
Tsunamis 51
Water sports for the disabled 57

Parks and Preserves
Africa 27
Mineral exploration 40, 42
National Wildlife Refuge System 39
New Jersey pine barrens 40
Prairies 38
Southwestern United States 6
Underwater 56
Upper Mississippi River 17
Yellowstone National Park 18

Pests
Fire ants 24
Genetically engineered pesticides 35
Mosquitos 22
Natural pesticides 23, 33-34
Pesticide use in developing countries 118
Sea lampreys in the Great Lakes 19

Plants
Autumn foliage 28
Creosote bushes 27
Crops 6
Distress signals 30
Exotic 16
Garden 33
National Register of Big Trees 29
Native plants on residential lawns 41
Perennial crops 33
Trifoliate orange 30
White pine trees 28
Pollution
Agricultural chemicals 118
Effect on economics 82
From disposable diapers 85
Great Lakes 83
Health effects 97
In Japan 81
In manufacturing 79
In Poland 120
In space 84
In Third World 121
Population
Growth problems 110-111, 115-116

R
Recreation
Boating 56
Camping 101
Diving 56, 96
Skiing 87
Sport fishing 15, 54-55
Sunbathing 99
Surfing 57
Urban 108
Water sports for the disabled 57

Recycling
Aluminum cans 85
Community efforts 81, 84
Composting 78
Groundwater 60
Industrial 86
Plastic 77
Returnable bottles 83

Research
Animal communication 13
Animal intelligence 12
Antarctic 117
Anthropology 105
Astronomy 7
By historical figures 108-109
Composting 76, 78
Cryptozoology 21
Diving physiology 96
Energy conservation 66
Entomology 22

Evolution 22
Fish behavior 20
Medical 96, 98
Meteorology 3, 5, 8, 52
Natural pesticides 34
Nuclear fusion 70
Paleontology 21
Plants 38
Pollution cleanup techniques 80
Preservation of species 14
Psychology 42
Sea lamprey eradication 19
Solid waste in landfills 94
Toxic waste disposal 74
Water chemistry 53, 55
Wildlife ecology 107

Rivers
Delaware 59
Hydroelectric power 70
Kickapoo 58
Mississippi 15, 17, 19, 58
Niagara 54

Soil Conservation
Alternative farm crops 33
Benefits 37, 58
Desertification 38
Earthworms and soil condition 34
Erosion at construction sites 36
Help from beavers 24

Solid Waste
Composting 76, 78
Historical problems 73
Plastic pollution in water 86
Recycling 77, 81, 84-86
Returnable bottles 83
Wasted food 94

Technology
Agricultural 59
Energy production 68, 70
Energy-saving 65-67
Genetic engineering 35, 111-112
Nuclear energy 69-70, 75
Pollution cleanup and control 79-80
Problems with high-tech industries 73
Recycling 77
Solar energy 77
Space 84
Toxic waste disposal 74
Third World
Aboriginal tribes 105
Agriculture 118, 122
Development 119-120
Ecological refugees 122
Environmental conservation 109, 112, 117-118
Famine in Africa 4, 121
Housing 119
Nutrition 93-94
Occupational health 121
Population problems 38, 110, 115-116
Transportation
Automobile 66
Mass transit 107
Ride sharing 66
Water pollution from road salt 78

W
Water
Drinking water 60, 101
Economic value 48
Irrigation 35
Water Conservation
In El Paso, Texas 60
In Israel 59
Worldwide 61
Water Pollution
Acid rain 8, 53, 55
At Niagara Falls 54
Citizen watchdogs 59
Cleanup techniques 80
Effect on surface layer of lakes and oceans 53
Effect on wildlife 15
From microelectronics industry 73
From road salt 78
Great Lakes 47
Groundwater 50

Historical problems 73
Lake Tahoe 88
Law enforcement 76
Milwaukee sewer project 49
Nonpoint sources 36
Penalties 54
Weather
Drought 4
Effects of volcanic eruptions 3
Global warming 3
Precipitation 5
Severe storms 4-5, 39
Wetlands
Florida Everglades 41
Louisiana wetlands 37
Upper Mississippi River 58
Wildlife
Animal behavior 11-12
Care of infant animals 17
Game management 107
Habitat in residential areas 41
Pollution threats 86
Wildlife Conservation
Bird habitat 14-15
Captive breeding 11, 16
Elephants 12
Gorillas 27
Habitat protection 58, 87
Marine 46, 51
Preservation of species 14
Refuges 17, 39